Rez@ee
8th February 2011, 09:02 AM
بیشتر خواص ابررساناها از مادهای به مادهٔ دیگر تغییر می کند. خواصی مانند ظرفیت گرمایی و دمای بحرانی. اما گذشته از اینها، دستهٔ خاصی از خواص تمام ابر رساناها مشترک است، از جمله این که در دماهای بسیار پایین، مقاومت خود را به کلی دربرابر جریان از دست میدهند و همچنین دیگر هیچ میدان مغناطیسی داخلی در آنها وجود نخواهد داشت. با توجه به چنین خواص مشترکی میتوان ابررسانایی را یک فاز(ماده)فاز ترمودینامیکی برای ماده دانست. ابررسانا شدن را میتوان گذار فازی به فاز دیگر قلمداد کرد. چیزی همانند تغییر حالت آب از مایع به گاز و یا برعکس. یکی از راههای ابتدایی برای سنجش مقاومت الکتریکی مواد، قرار دادن آنها در یک مدار به همراه یک منبع تغذیه و سپس اندازه گیری ولتاژ و آمپراژ و سنجش مقاومت از فرمول R = V/I است. اگر اختلاف پتانسیل صفر باشد، بدین معنی خواهد بود که مقاومت رسانا در برابر جریان صفر است و آن ماده یک ابررسانا است. ابررساناها میتوانند جریانی را بدون وجود ولتاژ عامل، حفظ کنند. خاصیتی که در آهنرباهای ابررسانا استفاده میشود که کاربرد وسیعی دارند. برای مثال از این آهنرباها در دستگاه MRI استفاده میشود. آزمایشهای گوناگون نشان میهد حلقهای از ابررساناها میتواند برای سالها جریان را بدون هیچ افت قابل اندازه گیری حفظ کند. آزمایشهای عملی نیمه عمر جریان را در چنین مدارهایی بیش از صد هزار سال برآورد میکنند و به صورت تئوری جریان در حلقهای ابررسانا، میتواند تا مدت زیادی باقی بماند مدتی که حتی از عمر جهان هم بیشتر خواهد بود! در رساناهای معمولی، جریان الکتریکی را میتوان به صورت شار الکترونها در یک شبکهٔ یونی تصویر کرد. الکترونها در این حرکت به طور پیوسته در حال برخورد با شبکهٔ یونی هستند. در این برخوردها بخش از انرژی الکترون توسط شبکهٔ یونی به گرما تبدیل میشود که در واقع همان انرژی جنبشی شبکهٔ یون است. در نتیجه بخشی از انرژی الکترونها در واقع هدر میرود. این حالت را مقاومت الکتریکی مینامیم. اما وضع در ابررساناها به گونهای دیگر است. در ابررساناهای معمول نمیتوان جریان را به تک الکترونهای جاری نسبت داد. در عوض میتوان جریان را حاصل جفت الکترونهای کوپر دانست که به هم وصل میشوند و با تعویض فونونهای خود، کاملا در کنار هم میمانند. طبق نظریهٔ مکانیک کوانتومی طیف انرژی این جفت کوپر داراي حداقل سطح خاص است و از آن کمتر نمیتواند باشد. در نتیجه ΔE حاصل را که میتوان آن را حداقل میزان انرژی جفت کوپر دانست، میتواند تنها دو حالت برای جفت کوپر و در نتیجه جریان پدید آورد. یا مقدار ΔE از مقدار kT که انرژی شبکهٔ یونی است و در آن k ثابت بولتزمن و T هم دمای شبکه است؛ بیشتر است که در این حالت جریان توسط شبکهٔ یونی به هدر نمیرود و این یعنی جفت کوپر یک ابرشار را پدید میآورد که میتواند بدون افت انرژی از شبکهٔ یونی عبور کند.
هنوز هیچ نظریهای که بتواند همهٔ انواع مشاهدهشدهٔ ابررسانایی را توصیف کند، وجود ندارد. اصول پایهای ابررسانایی در سال ۱۹۵۷ توسط سه فیزیکدان آمریکایی (جان باردین، رابرت شریفر و لئون کوپر) توضیح داده شد و به نام این سه فیزیکدان نظریهٔ BCS نام گرفت.
ابررسانایی را در سال ۱۹۱۱ هایک کمرلینگ اونز هلندی از دانشگاه لیدن کشف کرد. او مقاومت الکتریکی جیوهٔ جامد را در دماهای پایین بررسی میکرد و از هلیوم مایع -که تازه کشف شده بود- به عنوان سردکننده استفاده میکرد. او فهمید که در دمای ۴٫۲K مقاومت ناگهان به صفر میرسد. جایزه نوبل فیزیک در سال ۱۹۱۳ به همین خاطر به او داده شد.
در دهههای بعد، خاصیت ابررسانایی در مواد دیگری نیز دیده شد. در سال ۱۹۱۳ دیده شد که سرب (در دمای ۷K) و در سال ۱۹۴۱ نیترید نیوبیوم (در دمای ۱۶K) ابررسانا میشوند.
گام مهم بعدی در فهم ابررسانایی در سال ۱۹۳۳ اتفاق افتاد. در این سال مایسنر و اوخنفلد دریافتند که ابرساناها میدان مغناطیسی خارجی را طرد میکنند؛ پدیدهای که امروزه اثر مایسنر نامیده میشود. در سال ۱۹۳۵ فریتز و هاینز لندن نشان دادند که اثر مایسنر نتیجهای از کمینهبودن انرژی آزاد الکترومغناطیسی حملشده توسط جریانهای ابررسانا است.
در سال ۱۹۵۰ تئوری (Ginzburg-Landau) توسط Landau و Ginzburg مطرح شد. این تئوری که ترکیبی از تئوری مرتبهٔ دوم Landau با معادلهٔ موج Schrodinger میباشد دارای توضیح خوبی دربارهٔ مشخصه و خواص ابررساناها است. بخصوص Abrikosov نشان داد که تئوری Ginzburg-Landau پیشبینی تقسیم بندی ابررساناها را به دو دستهٔ نوع۱ type۱ و نوع۲ type۲ را کرده بود.
آقای Ginzburg و آقای Abrikosov در در سال ۲۰۰۳ برندهٔ جایزهٔ نوبل شدند (Landau در سال ۱۹۶۸ دارفانی را وداع گفت).
همچنین در سال ۱۹۵۰ Maxwell و Reynolds در جای دیگر یافتند که دمای بحرانی ابررساناها به جرم ایزوتوپی جزء اصلی عنصر بستگی دارد. این کشف مهم اشاره دارد به اثر متقابل الکترون و فونون lectron-phonon در نتیجهٔ مکانیزم میکروسکوپی مسئول برای ابررسانایی.
تئوری کامل میکروسکوپی ابررساناها در سال ۱۹۵۷ توسط آقایان Bardeen و Cooper و Schrhffer ارائه شد که مستقلاً پدیدهٔ ابررسانایی توسط Nikolay Bogolyubov توضیه داده شد.
این تئوری BCS (Bardeen Cooper Schrieffer) جریان ابررساناها را به عنوان مادهای با هدایت فوق العاده زیاد با زوجهای کوپر توضیح میدهد. (اثر متقابلی که جفتهای الکترون در مبادلهٔ فونون)
تئوری به عنوان ستون و پایه در سال ۱۹۵۸ قرار گرفت زمانی که Bogolyubov نشان داد که تابع موج BCS که استنتاج شده از یک استدلال متغیر است و میتواند بدست بیاید با تغییر قانونی و متعارف تئوری الکترونیک Hamiltonian. در سال ۱۹۵۹ Lev Gorkov اثبات کرد که تئوری BCS نزدیک به تئوری Ginzburg-Landau است و نزدیک به دمای بحرانی است.
در سال ۱۹۶۲ اولین سیم تجاری ابررسانا از آلیاژ نیوبیم- تیتانیم (niobium-titanium) در Westinghouse تحقیق شد.در همین سال Josephson مهمترین پیش بینی تئوریکی را انجام داد که چنین بود: یک ابر جریان میتواند از بین دو قطعه ابررسانا که با یک لایه نازک ایزوله شدهاند جاری شود. این پدیده اثر جوزفسون (effect Josephson) نام دارد که استخراج شده از دستگاه ابررساناها مثل SQUID’s میباشد که دقیقترین دستگاه اندازه گیر شار مغناظیسی کوانتوم موجود میباشد (h ثابت پلانك).
Josephson برندهٔ جایزهٔ نوبل در سال ۱۹۷۳ گردید.
تا سال ۱۹۸۶ فیزیک دان ها بر این باور بودند که تئوری BCS اررسانایی را در دماهای بالا تر از ۳۰˚k را نفی میکند، در همین سال Bednorz و muller کشف کردند که ابررسانایی در عناصر لانتان که بر پایهٔ اکسید مس (cuprate) هستند دارای دمای تبدیل ۳۵˚K میباشند. (در سال ۱۹۸۷ برندهٔ جایزهٔ نوبل فیزیک شدند)
در مدت کوتاهی توسط M.K. Wu کشف شد که جایگزین کردن لانتان با ایتریم و ساختن YBCO دمای بحرانی تا ۹۲˚K بالا میبرد که بسیار مهم است چون برای سرد کردن ابررسانا میتوان از نیتروژن مایع استفاده کرد (دمای جوش نیتروژن مایع در فشار جو ۷۷˚K است). این امر از نظر تجاری بسیار مهم است چون تولید نیتروژن مایع ارزانتر و در همان محل با مواد اولیه قابل تولید است و به بعضی از مشکلات برخورد نمیکنیم از قبیل آب بندی لولههای تزریق هلیوم.
خیلی دیگر از ابررساناهای cuprate کشف شدهاند و تئوری ابررساناها یکی از برجسته ترین مشکلات دربارهٔ این نوع مواد در علم فیزیک میباشد.
از تاریخ اکتبر ۲۰۰۷ بالا ترین دمای ابررسانایی مربوط به مادهای مرکب از تالیوم، جیوه، مس، باریم، کلسیم، اکسیژن با دمای بحرانی Tc=۱۳۸˚K میباشد.
در فوریهٔ ۲۰۰۸ خانوادهٔ دیگر ابررساناهای دما بالا کشف شد. Hideo Hosono از انستیتو تکنولوژی توکیو کشف کرد که lanthanum oxygen fluorine iron arsenide (LaO۱-xFxFeAs) در دمای ۲۶˚K تبدیل به ابررسانا میشود. بعد از مدت کوتاهی دیگران مواد دیگری از همین خانواده یافتند که در دمای ۵۵˚K به ابررسانا تبدیل میشوند.متخصصان امیدوارند که بررسی خانوادهٔ دیگری از ابررساناها باعث آسانتر شدن توضیح عملکرد این مواد خواهد شد.
کاربردها
ابررساناهای دمای پایین امروزه در ساخت آهنرباهای ویژه طیف سنجهای رزونانس مغناطیسی هسته، رزونانس مغناطیسی برای مقاصد تشخیص طبی، شتاب دهنده ذرهها، ترنهای سریع مغناطیسی و انواع ابزارهای رسانایی الکترونیکی بکار میرود. اما برای اینکه ابررساناهای دمای بالا در کاربردهای میدان مغناطیسی در دمای بالا رقابت کنند، هنوز زمان لازم دارد، این بعلت دشواری در تولید انبوه و با کیفیت بالاست. اگر چه در حال حاضر، بازار ابررساناهای دمای بالا رونق کمی دارد، گمان میرود که در خلال دو دهه آینده کاربر د آن فراگیر و پررونق شود.
آهنرباهای ابررسانا از قوی ترین آهنرباهای الکتریکی موجود در جهان هستند. ار آنها در قطارهای سریع السیر برقی و دستگاههای MRI و NMR و هدایت کردن ذرات در شتاب دهندهها استفاده میشود. همچنین میتوان به عنوان جدا کنندههای مغناطیسی در جاهایی که ذرات مغناطیسی ضعیف خارج میشود مثلا در صنایع رنگ سازی استفاده شود.
همچنین از ابررساناها در مدارات دیجیتالی نیز استفاده میشود به عنوان مثال در ایستگاههای RF و موبایل در ایستگاههای امواج ماکروویو.
از ابررساناها در Josephson junction برای ساختن بلوکهای ساختمان SQUID استفاده میشود. SQUID حساسترین اندازهگیر امواج مغناطیسی میباشد.
سری دیگردستگاههای Josephson برای ردیابی فوتون و یا به عنوان میکسر استفاده میشود. از مقاومتهایی که به ابررسانا تبدیل میشوند نیز در ساختن دماسنج و گرما سنجهای حساس micro-calorimeter ردیاب فوتونی استفاده میشود.
محققان امیدوارند که در آینده از ابررسانا در ساختن ترانسفورماتورها، وسایل ذخیرهٔ برق، الکتروموتورها، محدود کردن جریان اتصال کوتاه، وسایل شناور مغناطیسی استفاده كنند. اما چون ابررساناها به تغییر و حرکت میدان مغناطیسی حساسند استفاده از آن ها در برق جریان متناوب مثل ترانسفورماتورها بسیار سخت پیشرفت میكند ترجیحاً در حیطهٔ کاری جریان مستقیم میباشد.
هنوز هیچ نظریهای که بتواند همهٔ انواع مشاهدهشدهٔ ابررسانایی را توصیف کند، وجود ندارد. اصول پایهای ابررسانایی در سال ۱۹۵۷ توسط سه فیزیکدان آمریکایی (جان باردین، رابرت شریفر و لئون کوپر) توضیح داده شد و به نام این سه فیزیکدان نظریهٔ BCS نام گرفت.
ابررسانایی را در سال ۱۹۱۱ هایک کمرلینگ اونز هلندی از دانشگاه لیدن کشف کرد. او مقاومت الکتریکی جیوهٔ جامد را در دماهای پایین بررسی میکرد و از هلیوم مایع -که تازه کشف شده بود- به عنوان سردکننده استفاده میکرد. او فهمید که در دمای ۴٫۲K مقاومت ناگهان به صفر میرسد. جایزه نوبل فیزیک در سال ۱۹۱۳ به همین خاطر به او داده شد.
در دهههای بعد، خاصیت ابررسانایی در مواد دیگری نیز دیده شد. در سال ۱۹۱۳ دیده شد که سرب (در دمای ۷K) و در سال ۱۹۴۱ نیترید نیوبیوم (در دمای ۱۶K) ابررسانا میشوند.
گام مهم بعدی در فهم ابررسانایی در سال ۱۹۳۳ اتفاق افتاد. در این سال مایسنر و اوخنفلد دریافتند که ابرساناها میدان مغناطیسی خارجی را طرد میکنند؛ پدیدهای که امروزه اثر مایسنر نامیده میشود. در سال ۱۹۳۵ فریتز و هاینز لندن نشان دادند که اثر مایسنر نتیجهای از کمینهبودن انرژی آزاد الکترومغناطیسی حملشده توسط جریانهای ابررسانا است.
در سال ۱۹۵۰ تئوری (Ginzburg-Landau) توسط Landau و Ginzburg مطرح شد. این تئوری که ترکیبی از تئوری مرتبهٔ دوم Landau با معادلهٔ موج Schrodinger میباشد دارای توضیح خوبی دربارهٔ مشخصه و خواص ابررساناها است. بخصوص Abrikosov نشان داد که تئوری Ginzburg-Landau پیشبینی تقسیم بندی ابررساناها را به دو دستهٔ نوع۱ type۱ و نوع۲ type۲ را کرده بود.
آقای Ginzburg و آقای Abrikosov در در سال ۲۰۰۳ برندهٔ جایزهٔ نوبل شدند (Landau در سال ۱۹۶۸ دارفانی را وداع گفت).
همچنین در سال ۱۹۵۰ Maxwell و Reynolds در جای دیگر یافتند که دمای بحرانی ابررساناها به جرم ایزوتوپی جزء اصلی عنصر بستگی دارد. این کشف مهم اشاره دارد به اثر متقابل الکترون و فونون lectron-phonon در نتیجهٔ مکانیزم میکروسکوپی مسئول برای ابررسانایی.
تئوری کامل میکروسکوپی ابررساناها در سال ۱۹۵۷ توسط آقایان Bardeen و Cooper و Schrhffer ارائه شد که مستقلاً پدیدهٔ ابررسانایی توسط Nikolay Bogolyubov توضیه داده شد.
این تئوری BCS (Bardeen Cooper Schrieffer) جریان ابررساناها را به عنوان مادهای با هدایت فوق العاده زیاد با زوجهای کوپر توضیح میدهد. (اثر متقابلی که جفتهای الکترون در مبادلهٔ فونون)
تئوری به عنوان ستون و پایه در سال ۱۹۵۸ قرار گرفت زمانی که Bogolyubov نشان داد که تابع موج BCS که استنتاج شده از یک استدلال متغیر است و میتواند بدست بیاید با تغییر قانونی و متعارف تئوری الکترونیک Hamiltonian. در سال ۱۹۵۹ Lev Gorkov اثبات کرد که تئوری BCS نزدیک به تئوری Ginzburg-Landau است و نزدیک به دمای بحرانی است.
در سال ۱۹۶۲ اولین سیم تجاری ابررسانا از آلیاژ نیوبیم- تیتانیم (niobium-titanium) در Westinghouse تحقیق شد.در همین سال Josephson مهمترین پیش بینی تئوریکی را انجام داد که چنین بود: یک ابر جریان میتواند از بین دو قطعه ابررسانا که با یک لایه نازک ایزوله شدهاند جاری شود. این پدیده اثر جوزفسون (effect Josephson) نام دارد که استخراج شده از دستگاه ابررساناها مثل SQUID’s میباشد که دقیقترین دستگاه اندازه گیر شار مغناظیسی کوانتوم موجود میباشد (h ثابت پلانك).
Josephson برندهٔ جایزهٔ نوبل در سال ۱۹۷۳ گردید.
تا سال ۱۹۸۶ فیزیک دان ها بر این باور بودند که تئوری BCS اررسانایی را در دماهای بالا تر از ۳۰˚k را نفی میکند، در همین سال Bednorz و muller کشف کردند که ابررسانایی در عناصر لانتان که بر پایهٔ اکسید مس (cuprate) هستند دارای دمای تبدیل ۳۵˚K میباشند. (در سال ۱۹۸۷ برندهٔ جایزهٔ نوبل فیزیک شدند)
در مدت کوتاهی توسط M.K. Wu کشف شد که جایگزین کردن لانتان با ایتریم و ساختن YBCO دمای بحرانی تا ۹۲˚K بالا میبرد که بسیار مهم است چون برای سرد کردن ابررسانا میتوان از نیتروژن مایع استفاده کرد (دمای جوش نیتروژن مایع در فشار جو ۷۷˚K است). این امر از نظر تجاری بسیار مهم است چون تولید نیتروژن مایع ارزانتر و در همان محل با مواد اولیه قابل تولید است و به بعضی از مشکلات برخورد نمیکنیم از قبیل آب بندی لولههای تزریق هلیوم.
خیلی دیگر از ابررساناهای cuprate کشف شدهاند و تئوری ابررساناها یکی از برجسته ترین مشکلات دربارهٔ این نوع مواد در علم فیزیک میباشد.
از تاریخ اکتبر ۲۰۰۷ بالا ترین دمای ابررسانایی مربوط به مادهای مرکب از تالیوم، جیوه، مس، باریم، کلسیم، اکسیژن با دمای بحرانی Tc=۱۳۸˚K میباشد.
در فوریهٔ ۲۰۰۸ خانوادهٔ دیگر ابررساناهای دما بالا کشف شد. Hideo Hosono از انستیتو تکنولوژی توکیو کشف کرد که lanthanum oxygen fluorine iron arsenide (LaO۱-xFxFeAs) در دمای ۲۶˚K تبدیل به ابررسانا میشود. بعد از مدت کوتاهی دیگران مواد دیگری از همین خانواده یافتند که در دمای ۵۵˚K به ابررسانا تبدیل میشوند.متخصصان امیدوارند که بررسی خانوادهٔ دیگری از ابررساناها باعث آسانتر شدن توضیح عملکرد این مواد خواهد شد.
کاربردها
ابررساناهای دمای پایین امروزه در ساخت آهنرباهای ویژه طیف سنجهای رزونانس مغناطیسی هسته، رزونانس مغناطیسی برای مقاصد تشخیص طبی، شتاب دهنده ذرهها، ترنهای سریع مغناطیسی و انواع ابزارهای رسانایی الکترونیکی بکار میرود. اما برای اینکه ابررساناهای دمای بالا در کاربردهای میدان مغناطیسی در دمای بالا رقابت کنند، هنوز زمان لازم دارد، این بعلت دشواری در تولید انبوه و با کیفیت بالاست. اگر چه در حال حاضر، بازار ابررساناهای دمای بالا رونق کمی دارد، گمان میرود که در خلال دو دهه آینده کاربر د آن فراگیر و پررونق شود.
آهنرباهای ابررسانا از قوی ترین آهنرباهای الکتریکی موجود در جهان هستند. ار آنها در قطارهای سریع السیر برقی و دستگاههای MRI و NMR و هدایت کردن ذرات در شتاب دهندهها استفاده میشود. همچنین میتوان به عنوان جدا کنندههای مغناطیسی در جاهایی که ذرات مغناطیسی ضعیف خارج میشود مثلا در صنایع رنگ سازی استفاده شود.
همچنین از ابررساناها در مدارات دیجیتالی نیز استفاده میشود به عنوان مثال در ایستگاههای RF و موبایل در ایستگاههای امواج ماکروویو.
از ابررساناها در Josephson junction برای ساختن بلوکهای ساختمان SQUID استفاده میشود. SQUID حساسترین اندازهگیر امواج مغناطیسی میباشد.
سری دیگردستگاههای Josephson برای ردیابی فوتون و یا به عنوان میکسر استفاده میشود. از مقاومتهایی که به ابررسانا تبدیل میشوند نیز در ساختن دماسنج و گرما سنجهای حساس micro-calorimeter ردیاب فوتونی استفاده میشود.
محققان امیدوارند که در آینده از ابررسانا در ساختن ترانسفورماتورها، وسایل ذخیرهٔ برق، الکتروموتورها، محدود کردن جریان اتصال کوتاه، وسایل شناور مغناطیسی استفاده كنند. اما چون ابررساناها به تغییر و حرکت میدان مغناطیسی حساسند استفاده از آن ها در برق جریان متناوب مثل ترانسفورماتورها بسیار سخت پیشرفت میكند ترجیحاً در حیطهٔ کاری جریان مستقیم میباشد.