PDA

توجه ! این یک نسخه آرشیو شده میباشد و در این حالت شما عکسی را مشاهده نمیکنید برای مشاهده کامل متن و عکسها بر روی لینک مقابل کلیک کنید : پلاسما چیست؟



Rez@ee
21st December 2010, 03:06 PM
(http://irphysics.blogfa.com/post-17.aspx)

اغلب مشاهده شده که نیروی الکترومغناطیسی باعث ایجادساختارhttp://tbn0.google.com/images?q=tbn:7tuAItfaDem1yM:http://prl.anu.edu.au/studentinfo/images/plasma.jpg(منظم)شده یعنی اتمهاوملکولهاوجامدات کریستالی راتثبیت می نماید.درحقیقت نتایج (اثرات)نیروی مغناطیسی که بیش از همه موردمطالعه قرارگرفته اندموضوع ومبحث شیمی وفیزیک جامدات را تشکیل داده که هردومبحث برشناخت سازه های اساسأاستاتیک بسط یافته اند.
سیستم های دارای ساختار منظم انرژی چسبندگی بیشتری نسبت به انرژی حرارتی پیرامونی دارند.اگراین سازه ها در محیطی باحرارت کافی قرارگیرند تجزیه می شوند یعنی کریستال ها ذوب می شوند و نظم مولکولی به هم می ریزد .در دمای نزدیک یا بالاتر از انرژی یونیزاسیون اتمی،اتمها نیز به الکترون های با بارمنفی ویون های با بار مثبت تجزیه می شوند.این ذرات بارداربه هیچ وجه آزاد نبوده ودرحقیقت به شدت تحت تاثیر میادین الکترومغناطیسی یکدیگر قرار می گیرند.با این حال چون بارها دیگر چسبیده نیستند،ترکیب ومونتاژآنها قادر به حرکات مشترک با پیچیدگی و قدرت بالا خواهند بود.چنین ترکیبی پلاسما نامیده می شوند.
البته سیستم های دارای چسبندگی می توانند سازه وساختاربا چسبندگی بالا را نشان دهند مانند مولکول پروتئین .پیچیدگی در پلاسما به نوعی متفاوت بوده ومعمولأبه صورت موقثی وفضایی بیان می شوند.پلاسما بیشتردارای ویژگی تحریک تغییرات مختلف وضعیتهای مشترک دینامیکی است. http://www.nersc.gov/news/annual_reports/annrep06/assets/img/AR_figures/sun-lrg.jpg
چون تجزیه حرارت ،قبل ازیونیزه شدن ،چسبندگی واتحاد بین اتمی را می شکند،بیشتر پلاسماهای زمینی با حالت گازشروع می شوند.در حقیقت بعضی مواقع پلاسمابه عنوان گازی تلقی می شود که به اندازه ای یونیزه شده که عملکرد پلاسما مانند از خود بروزدهد. توجه داشته باشید که عملکرد پلاسما مانند پس از بخش نسبتأکمی از گازی که یونیزه شده رخ می دهد. بنابراین گازهایی که تااندازه ای یونیزه شده اند دارای ویژگی شبیه به بیشترنشانه های خارق العاده مخصوص گازهای کاملأ یونیزه شده هستند.
پلاسماهایی که ازیونیزه شدن گازهای خنثی ناشی می شود عمدتأ حاوی تعداد مساوی ناقل های مثبت و منفی هستند. در این حالت مایعات دارای بارمخالف کاملأ به هم چسبیده و درمقیاسهای طول واقعی (ماکروسکوپی) تلاش می کنند همدیگررا خنثی نمایند چنین پلاسماهایی شبه خنثی نامیده می شوند (شبیه به خاطراینکه انحرافات کوچک ازخنثی بودن کامل اثرات مهم دینامیکی برای وضعیتهای پلاسمای خاصی دارد.)پلاسماهای غیری خنثی قوی که ممکن است بارهای فقط از یک نوع را داشته باشند،اصولاًدرآزمایشات لابراتواری رخ داده ،توازن آن ها به وجود میادین مغناطیسی شدید که حول آن مایع باردارمی چرخد بستگی دارد.
بعضی مواقع مشاهده شده که95%(یا99%،اینکه بخواهید چه کسی را تخت تأثیرقراردهید )ازطبیعت ازپلاسما تشکیل شده است.این نظریه دارای ویژگی دوجانبه کاملاًجالب فیزیک وتقریباً غیرممکن بودن رد کردن (یاتاییدکردن)آن است.با این حال،لازم است به وجود و عمومیت داشتن محیط پلاسما اشاره شود.در دوران اولیه جهان،همه چیز در حالت پلاسما بوده است.دردوران کنونی،ستارگان،سحابیها وحتی فضای بین ستارگان از پلاسما پرشده اند.درمنظومه شمسی نیز پلاسما به شکل بادهای خورشیدی جریان داشته و زمین نیز کاملاً توسط پلاسمایی که درمیدان مغناطیسی زمین قرارگرفته احاطه شده است.
یافتن پلاسمای زمینی نیزمشکل نیست . چنین حالاتی دررعدوبرق ،لامپهای فلورسنت ،انواع آزمایشات لابراتواری ومجموعه درحال رشد فرایندهای صنعتی رخ می دهند.درحقیقت تخلیه برق (رعدو برق ) اخیراً هسته ی اصلی صنعت مونتاژوساخت مدارات ریز (میکرو)را تشکیل می دهد.سیستم های مایع وحتی جامدی که بعضی مواقع می توانند اثرات مشترک الکترومغناطیسی که دارای ویژگی پلاسما را دارند از خود بروزدهند.مثلاًجیوه مایع دارای بسیاری ازوضعیتهای دینامیکی مانند امواج آلفن( ALFVEN ) بوده که درپلاسماهای معمولی رخ می دهد. http://www.physics.ucla.edu/plasma-exp/BouncingBeam.gif
تاریخچه مختصری ازفیزیک پلاسما
اگر کلبول های مختلف خون ازآن جدا شوند آنچه که باقی می ماند مایعی شفاف است که توسط دانشمندان پزشکی چک (که برگرفته از کلمه یونانی به معنای ژله یا ماده قابل شکل گیری است)پلاسما نامیده شد.جانزپورکنژ شیمیدان آمریکایی (1869-1787)برنده جایزه نوبل اولین بارازاین اصطلاح برای تشریح یک گازیونیزه شده در1927استفاده نموده،لانگمورازنحوه جابجایی یونها الکترونها توسط جریان الکتریسیته به چگونگی انتقال گلبولهای سفید وقرمز توسط پلاسما پی برد.لامگوربه همراه همکارش لویی تونکس ویژگیهای شیمیایی وفیزیکی حبابهای الکتریکی دارای المان تنگستن را برای یافتن راهی برای افزایش عمرمفید تنگستن مورد مطالعه قراردادند (که این هدفی بود که نهایتاً بدست آمده).درطی فرایند وی فرضیه (غلاف پلاسما)یعنی لایه های مرزی که بین پلاسماهای یونیزه شده وسطوح جامد تشکیل می شوند را ارايه نمود.وی همچنین دریافت که مناطق ونواحی خاصی از لوله و مجرای تخلیه پلاسما دارای تغییرات نوبه ای تراکم الکترونی بوده که امروز امواج لانگمور نامیده می شوند.این مبنا و پایه فیزیک پلاسما بود.امروز تحقیقات لانگمور مبنای تئوریک بیشترروشهای فرآوری پلاسما برای ساخت مدارات مجتمع را تشکیل میدهند. پس از لانگمور تحقیقات پلاسما به تدریج دربخشهای دیگرنیز گسترش یافت که از این میان پنج بخش اهمیت خاصی دارند.
1- توسعه و پیشرفت بخش امواج رادیویی منجر به کشف یوسفر زمین شد که لایه ای است دارای گازهای تقریباً یونیزه شده دراتمسفربالایی با قابلیت انعکاس امواج رادیویی و موید این حقیقت که اگرفرستنده بالاتراز افق قرارگیرد می تواند امواج رادیویی را منعکس نماید. متاسفانه بعضی مواقع یوسفر امواج رادیویی را جذب ومنحرف می نماید. مثلاً میدان مغناطیسی زمین باعث می شود امواج با ویژگیهای مغناطیسی پلاریزه متفاوت با سرعتهای مختلف انتشاریابند که این تاثیری است که باعث به وجود آمدن امواج سایه ای ghost signals (یعنی امواجی که قبل یا بعد از موج اصلی می رسند)می شود.جهت درک واصلاح بعضی ازنقایص درارتباطات رادیویی دانشمندان متعددی ازجمله آپلتون وبادن به طورسیستماتیک فرضیه انتشارامواج الکترومغناطیسی غیریکنواخت را ارائه نمودند.

2- دانشمندان فیزیک نجومی خیلی سریع دریافتند که بیشتر(بخش اعظم)جهان از پلاسما تشکیل شده و اینکه درک وشناخت بهترفیزیک نجومی شناخت و درک بهترفیزیک پلاسما را می طلبد. دراین زمینه یکی از پیشگامان،هانس آلفن Hannes Alfven بود که درحدود سال 1940 فرضیه هیدرودینامیک مغناطیسی یا MHD را ارائه نمود که درآن با پلاسما اساساً به عنوان یک مایع هادی برخورد می شود. از این فرضیه به شکلی گسترده و موفقیت آمیز برای بررسی لکه های خورشیدی، شعله های خورشیدی، بادهای شمسی، تشکیل ستارگان و مجموعه ای از دیگر موضوعات درفیزیک نجومی استفاده شده است. دو موضوع دارای اهمیت و توجه خاص درفرضیه MHD ارتباط مجدد مغناطیسی و فرضیه دینامو ( Dynamo ) هستند. ارتباط مجدد مغناطیسی Magnetic reconnection فرآیندی است که در آن خطوط میدان مغناطیسی ناگهان تغییر ساختارداده می توانند باعث تبدیل ناگهانی بخش اعظمی از انرژی مغناطیسی به انرژی حرارتی و شتاب و تسریع برخی از ذرات باردار به انرژی بالا شده و اغلب به عنوان مکانیزم بنیادی ورای شعله های خورشیدی شناخته می شوند. درفرضیه دینامو اینکه چگونه حرکت مایع MHD باعث افزایش تولید میدان مغناطیسی ماکروسکوپی می شود و مورد مطالعه قرار می گیرد. این فرایند مهم است چون میادین مغناطیسی خورشیدی وزمینی تقریباً سریع تحلیل خواهند رفت اگرتوسط تاثیر دینامو حفظ نشوند. میدان مغناطیسی زمین حرکت هسته مذاب ،که می توان با آن به عنوان مایع MHD با تقریبی قابل قبول برخورد نمود ، حفظ می شود.
http://www.princeton.edu/pr/pwb/05/0516/m/8b.jpg
3- تولید بمب اتمی در 1952 توجه همگان را تا اندازه زیادی به گداخت حرارتی هسته ای کنترل شده به عنوان منبع قدرت ممکنه برای آینده جلب نمود. ابتدا این تحقیق به صورت مخفیانه و مستقل توسط آمریکا ، روسیه و انگلستان صورت گرفت . با این حال در 1958 این تحقیقات علنی شده و منجر به انتشارات مقالات بسیار مهم و تاثیر گذار در اواخر دهه 1950 و اوایل دهه 1960 شد. اگر بخواهیم دقیق تر صحبت کنیم فیزیک پلاسمای تئوریک دراین سالها ابتدا به عنوان یک روش کاملاً مبتنی بر ریاضی ارائه شد . جای تعجب نیست که (بگوییم) فیزیکدانان گداختی بیشتر با شناخت و بررسی اینکه چگونه می توان پلاسمای هسته ای حرارتی را اکثراً توسط میدان مغناطیسی به دام انداخت و بررسی نا پایداریهای پلاسما که باعث فرار (از کنترل خارج شدن ) آن می شود سروکار دارند.

4- کشف جیمز وان آس در ارتباط با کمربند های تشعشعی اطراف زمین با استفاده از اطلاعات ارسالی توسط ماهواره اکسپلو در آمریکا در 1958 مبنای شروع بررسی سیستماتیک ماگنتو سفر به کمک ماهواره بوده و زمینه فیزیک پلاسمای فضایی باز نمود. دانشمندان علوم فضایی فرضیه به دام انداختن (کنترل) پلاسما توسط میدان مغناطیسی را از تحقیقات گداختی یعنی فرضیه امواج پلاسما از فیزیک یونسفری وایده ارتباط مجدد مغناطیسی به عنوان مکانیزمی برای آزادسازی انرژی و شتاب ذرات از فیزیک نجومی گرفتند.

5- توسعه نیرو با قدرت بالا در دهه 1960 زمینه را برای فیزیک پلاسمای لیزری باز نمود. وقتی یک طیف لیزری با قدرت بـالا بـا هـدفـی جـامـد برخورد نماید مواد سریعاً ذوب شده و در ناحیه (مرز) بین طیف و هدف پلاسما تشکیل می شود پلاسمای لیزری ویژگیهای تقریبا خاصی (مانند تراکم های خاص جامدات ) داشته که در بیشتر پلاسماهای معمولی یافت نمی شوند. یکی از کاربردهای اصلی پلاسمای لیزری در روشی است که انرژی گداختی به کار رفته و تحت عنوان گداخت حبسی داخلی شناخته می شود. در این روش از طیفهای لیزری کاملاً تمرکز یافته برای انفجار داخلی یک هدف جامد کوچک تا زمانیکه تراکم و دمای خاص گداخت هسته ای (یعنی مرکز و هسته بمب هیدروژنی ) بدست آید . کار برد جالب دیگر فیزیک پلاسمای هسته ای استفاده از میادین الکتریکی بسیار قوی برای شتاب ذرات است که زمانی تولید می شوند که موج لیزر با شدت بالا از پلاسما عبور نماید . فیزیکدانان انرژی بالا امید دارند (بتوانند )از روشهای شتاب پلاسمابری کاهش چشمگیر ابعاد و هزینه شتاب دهنده های ذرات استفاده نمایند.

*alien*
2nd April 2011, 01:12 AM
بدون شک این قسمت نیز با وجود نو پابودن دارای پیچیدگی های بسیاری می باشد که نمی توان تمامی ان را ذر یک شماره از نشریه در اختیار شما خوانندگان محترم قرار داد.
نیازهای گداخت خود موارد بسیاری است که به ترتیب اهمیت، انها را در این شماره وشماره های بعدی نشریه ذکر خواهد شد.
گداخت هسته ای برای ایجاد ، نیاز به یک محیط پلاسمایی دارد که قبل از پرداختن به موضوع گداخت ان را مورد بررسی قرار می دهیم.
پلاسما:
در سال ۱۸۷۹ فیزیکدان انگلیسی سر ویلیام کروکس، در بررسی ویژگی‌های ماده در تخلیهٔ الکتریکی حالت چهارم یعنی پلاسما را کشف نمود.
پلاسما ، plasma – حالتي از ماده است كه در دماي خيلي بالا بوجود مي آيد و ساختارهاي مولكولي مفهوم خود را در اين وضعيت از دست مي دهند . در حالت پلاسما اتم ها و ذرات زير اتمي مانند مانند الكترون و پروتون و نوترون آزادانه در محيط حركت مي كنند و تغيير موقعيت مي دهند.
حالت چهارم ماده، پلاسما، شبيه گاز است و اما ذرات سازنده آن يون ها مي باشد.
پلاسما در فيزيك،يك محيط رساناي الكتريكي است كه تعداد ذرات باردار مثبت و منفي آن تقريبا با هم برابرند و زماني ايجاد مي شود كه اتم ها در گاز يونيزه شوند.
گاهي به پلاسما‏‎ حالت‌‏‎ چهارم ماده اطلاق مي شود كه از حالتهاي سه گانه جامد،مايع،گاز متمايز است.
هر الكترون داراي يك واحد بار منفي است بار مثبت توسط اتمها يا مولكولهايي كه اين الكترونها را از دست داده اند حمل ميشود.
. پلاسما اغلب بسيار گرم است و می‌توان آن را در ميدان‌های مغناطيسی به دام انداخت. اصطلاح حالت چهارم ماده این ایده را که می‌توان با گرم کردن مواد جامد (حالت اول) به مایع (حالت دوم) و با گرم کردن مایع به گاز (حالت سوم) رسید، را دنبال می‌کند.
پلاسما يك گاز يوني شده ي بسيار سوزان است، گازي چنان سوزان كه برخوردهاي شديد گرمايي، همه يا بسياري از اتم هاي آن را به يون هاي مثبت و الكترون ها تجزيه كرده است.
در حالت‌های جامد، مایع و گاز، دما را می‌توان از روی دامنهٔ حرکت (سرعت نوسان) ذرات سازندهٔ ماده تعریف کرد اما در حالت پلاسما، دما از روی میزان جدایش یون‌های مثبت از الکترون‌ها تعریف می‌شود. با توجه به این مورد می توان گفت هرچه دما بیشتر شود میزان یونیزه شدن پلاسما نیز بیشتر می شود.
اگر پلاسما تا دمای زیاد حرارت داده شود، نظم موجود در پلاسما از بین می‌رود و ماده به توده درهم و برهم و کاملا نامنظم ذرات منفرد تبدیل می‌شود. بنابراین پلاسما گاهی نظیر سیالات ، رفتاری جمعی و گاهی نظیر ذرات منفرد ، بصورت کاملا تکی عمل می‌کند. به دلیل همین رفتارهای عجیب و غریب است که غالبا پلاسما در کنار گازها و مایعات و جامدات ، چهارمین حالت ماده معرفی می‌شود. بنابراین با توجه به اینکه چگالی پلاسما قابل توجه می‌باشد. مدولا نک در تک ذرات منفرد به مشکلات رفتار پلاسما افزوده می‌شود.
ساختار پلاسما:
عموما پلاسما را مجموعه‌ای از یونها ، الکترونها و اتمهای خنثی جدا از هم و تقریبا در حال تعادل مکانیکی ـ الکتریکی می‌گویند. حالتهای خاصی را در مقابل مغناطیس نشان می‌دهد. این رفتارها کاملا برعکس رفتار گازها در مقابل میدان مغناطیسی است. زیرا گازها به سبب خنثی بودنشان از لحاظ بار الکتریکی توانایی عکس ‌العمل در مقابل مغناطیس و میدان وابسته به آن را ندارند.
در کنار این رفتار پلاسما می‌تواند تحت تأثیر میدان مغناطیسی درونی که از حرکت یونهای داخلی به عمل می‌آید قرار گیرد. همچنین پلاسما به علت رفتار جمعیتی که از خود نشان می‌دهد، گرایشی به متأثر شدن در اثر عوامل خارجی ندارد و اغلب طوری رفتار می‌کند که گویی دارای رفتار مخصوص به خودش است. معیار دیگر برای پلاسما آن است که فراوانی بارهای مثبت و منفی باید چندان زیاد نباشد که هر گونه عدم توازن موضعی بین غلظتها این بارها غیر ممکن باشد.مثلا بار مثبت به سرعت بارهای منفی را بسوی خود می‌کشد تا توازن بار از نو برقرار سازد. بنابراین اگر چه پلاسما به مقدار زیادی بار آزاد دارد، ولی از لحاظ بار الکتریکی خنثی است. ماده در حالت پلاسمانسبت به حالتهای جامد ، مایع و گاز نظم کمتری دارد. با این حال خنثی بودن الکتریکی پلاسما بطور متوسط انرژی از نظم را نشان می‌دهد.

*alien*
2nd April 2011, 01:13 AM
توضيح كامل تري از پلاسما:
گازهايي كه تا حد زيادي يونيده هستند رساناهاي خوبي براي الكتريسيته هستند. علاوه بر آن حركت ِ ذرات باردار ِ گازها هم مي تواند ميدان الكترومغناطيسي توليد كند. (تابش موج). وقتي گاز يونيده تحت تأثير يك ميدان الكتريكي ِ ساكن قرار بگيرد حاملهاي بار در اين گاز به سرعت طوري مجددا توزيع مي شوند كه قسمت ِ اعظم ِ گاز در مقابل ِ ميدان محافظت مي شود. لانگ موير در سال 1929 در مجله ي فيزيكال ريويو لترز ناحيه اي از گازها را كه نسبتا خالي از ميدان است و محافظت شده است و در آن بارهاي مثبت و منفي در توازن اند پلاسما ناميد و نواحي محافظ روي مرز ِ پلاسما را پوشينه ناميد.از مهمترين خواص پلاسما اينست كه مي كوشد از لحاظ الكتريكي خنثي بماند.
در ابتدا پلاسما در ارتباط با تخليه ي الكتريكي در گازها و قوسهاي الكتريكي و شعله ها مورد نظر بود اما اينك در اخترفيزيك نظري، مسأله ي گداخت و راكتورهاي هسته اي گرمايي و مهار ِ يونها هم مورد اهميت است. براي تشكيل پلاسما نيازمند ِ دماي بالايي هستيم تا توانايي تفكيك الكترونها را از يونهاي مثبت در گازها داشته باشيم. جايي كه الكترونش يك طرف و يونهاي مثبتش يك طرف ديگر باشد را پلاسما مي گويند. براي ايجاد پلاسما از راكتور گرمايي استفاده مي شد اما جديدا از ليزر و مواد جامد هم استفاده مي شود.




دانستن اطلاعاتی در مورد پلاسما مورد نیاز گداخت تا همین قسمت کافی می باشد، این قسمت به بعد ویژه علاقه مندان به موضوع پلاسما ذکر شده است.
مواد پلاسمایی:
بيش تر مواد در جهان به صورت پلاسما هستند.
اغلب گفته ميشود كه 99% ماده موجود در طبيعت در حالت پلاسماست، يعني به شكل گاز الكتريسته داري كه اتمهايش به يونهاي مثبت و الكترون منفي تجزيه شده باشد. اين تخمين هر چند ممكن است خيلي دقيق نباشد ولي تخمين معقولي است از اين واقعيت كه درون ستارگان و جو آنها، ابرهاي گازي و اغلب هيدروژن فضاي بين ستارگان به صورت پلاسماست. در نزديكي خود ما ، وقتيكه جو زمين را ترك ميكنيم بلافاصله با پلاسمايي مواجه مي شويم كه شامل كمربندهاي تشعشعي وان آلن و بادهاي خورشيدي است.
خورشيد و همه ي ستارگان كرات عظيمي از پلاسما هستند در حدود 99% جرم كل جهان در اين كرات پلاسمايي قرار دارد.
صاعقه، آتش سنت المو ، ايينه مغناطيسي، شفق شمالي و يونوسفر خود نوعي پلاسما هستند.
صاعقه ايينه مغناطيسي
گاز داخل لوله هاي مهتابي و تابلوهاي نئوني پلاسما است، قوس درخشان دستگاه جوش الكتريكي پلاسما است، آتش خروجي از موشك پلاسما است و كره ي آتشين بمب هسته اي نيز پلاسما است.
پدیده‌های طبیعی زیادی از جمله آتش ، خورشید ، ستارگان و غیره در رده حالت پلاسمایی ماده قرار می‌گیرند. مواد طبیعی در حالت پلاسما عبارتند از انواع شعله ، بخش خارجی جو زمین ، اتمسفر ستارگان ، بسیاری از مواد موجود در فضای سحابی و بخشی از دم ستاره دنباله‌دار و شفقهای قطبی شمالی، نمایش خیره کننده از حالت پلاسمایی ماده است که در میدان مغناطیسی جریان می یابد.

انواع پلاسما :
پلاسمای جو: نزدیکترین پلاسما به ما )کره زمین( ، یونوسفر (Ionosphere) می‌باشد که از صد و پنجاه کیلومتری سطح زمین شروع و به طرف بالا ادامه می‌یابد. لایه‌های بالاتر یونسفر ، فیزیک سیستمها به فرم پلاسما می‌باشند که توسط تابش موج کوتاه در حوزه وسیعی ، از طیف اشعه فرابنفش گرفته تا پرتوهای ایکس و همچنین بوسیله پرتوهای کیهانی و الکترونهایی که به گلنونسفر اصابت می‌کنند یونیزه می‌شوند.
شفق قطبی: پدیده شفق نیز نوعی پلاسما است که تحت اثر یونیزاسیون ایجاد می‌شود. یونسفر پلاسمایی با جذب پرتوهای ایکس ، فرابنفش ، تابش خورشیدی ، انعکاس امواج کوتاه و رادیویی اهمیت اساسی در ارتباط رادیویی در سرتاسر جهان دارد. با همه این احوال نه تنها زمین بلکه زهره و مریخ نیز فضایی یونسفری دارند.

ملاحظات نظری نشان می‌دهد که در سایر سیاره‌های منظومه شمسی نظیر مشتری ، زحل ، سیاره اورانوس ، نپتون نیز باید یونسفرهای قابل مشاهده وجود داشته باشد. فضای بین سیاره‌ای نیز از پلاسمای بین سیاره‌ای در حال انبساط پر شده که محتوای یک میدان مغناطیسی ضعیف (حدود -510 تسلا) است.
هسته‌های ستارگان دنباله دار نیز به فضای بین پلاسمایی پرتاب می‌کند. از طرف دیگر ، خورشید منظومه شمسی مانند یک کره پلاسمایی است. درخشندگی شدید خورشید ، معمولا عین یک درخشندگی پلاسمایی می‌باشد. خورشید به سه قشر گازی فتوسفر ـ کروموسفر و کورونا (که کرونای آن بیش از یک میلیون درجه ، حرارت دارد) احاطه شده است و انتظار می‌رود که هزاران سال به درخشندگی خود ادامه بدهد.

استفاده از تمامی مطالب سایت تنها با ذکر منبع آن به نام سایت علمی نخبگان جوان و ذکر آدرس سایت مجاز است

استفاده از نام و برند نخبگان جوان به هر نحو توسط سایر سایت ها ممنوع بوده و پیگرد قانونی دارد