PDA

توجه ! این یک نسخه آرشیو شده میباشد و در این حالت شما عکسی را مشاهده نمیکنید برای مشاهده کامل متن و عکسها بر روی لینک مقابل کلیک کنید : مشتق



nafise sadeghi
28th November 2008, 11:30 PM
مشتق گیری و مشتق پذیری


در گذشته های نه چندان دور، مشتق یک تابع را به صورت زیر نشان می دادند:

http://daneshnameh.roshd.ir/mavara/img/daneshnameh/math/5ddb3e9e1a870dfda6ee875d62c84d2f.png
که در این فرمولhttp://daneshnameh.roshd.ir/mavara/img/daneshnameh/math/132ae3886348b81af95bfad07b170a70.pngنشان دهنده میزان تغییرات یک کمیت است. ولی در حال حاضر برای محاسبه مشتق توابع،بیشتر از فرمول زیر استفاده میکنند:

http://daneshnameh.roshd.ir/mavara/img/daneshnameh/math/a74c59091f3de087c282f81c15dd716c.png
معمولا از نمادهای زیر برای نشان دادن مشتق تابع f نسبت به متغیر x، استفاده میکنند:

http://daneshnameh.roshd.ir/mavara/img/daneshnameh/math/e2bd997d5d5b81e3fdf7ab79bf65992b.png
http://daneshnameh.roshd.ir/mavara/img/daneshnameh/math/502d68a492d3be615bbe59f21296abd4.png
http://daneshnameh.roshd.ir/mavara/img/daneshnameh/math/ba52f1f0d151d507d949a95dfdbdf44b.png

یک تابع را در نقطه ای مانند x مشتق پذیر گویند اگردر آن نقطه مشتق موجود باشد. و برای مشتق پذیری تابع در یک بازه لازم است تابع در هر نقطه دلخواه از بازه مشتق پذیر باشد.اگر تابع در نقطه ای مانند c پیوسته (http://daneshnameh.roshd.ir/mavara/mavara-index.php?page=%D9%BE%DB%8C%D9%88%D8%B3%D8%AA%DA%A F%DB%8C) نباشد آنگاه در c نمیتواند مشتق پذیر باشد.البته لازم به ذکر است که پیوستگی در یک نقطه وجود مشتق را تضمین نمیکند.مشتق یک تابع مشتق پذیر میتواند خود نیز مشتق پذیر باشد،که به مشتق آن مشتق دوم تابع گویند.مشتق مراتب بالاتر نیز به همین ترتیب تعریف میشوند.


بررسی مشتق از نظر هندسی (http://daneshnameh.roshd.ir/mavara/mavara-index.php?page=%D9%87%D9%86%D8%AF%D8%B3%D9%87)

http://daneshnameh.roshd.ir/mavara/img/daneshnameh_up/1/12/momas22.gif

از نظر هندسی مشتق یک تابع در یک نقطه دلخواه ،شیب خط مماس بر منحنی در آن نقطه است.البته پیدا کردن مستقیم شیب خط مماس در یک نقطه کار دشواری است.زیرا فقط مختصات یک نقطه از خط مماس را داریم.(برای پیدا کردن شیب یک خط از مختصات دو نقطه بر روی خط استفاده میکنیم)برای حل این مشکل از یک خط متقاطع استفاده کرده و این خط را به خط مماس نزدیک میکنیم.برای درک بهتر موضوع به شکل مقابل توجه نمایید.در این شکل خط متقاطع با رنگ بنفش و خط مماس با رنگ سبز مشخص شده است و عددی که در تصویر تغییر میکند نشان دهنده شیب خط متقاطع میباشد. حال از دیدگاه ریاضی این روش را بیان میکنیم:
از دیدگاه ریاضی بدست آوردن مشتق با حد (http://daneshnameh.roshd.ir/mavara/mavara-index.php?page=%D8%AD%D8%AF)گیری از شیب خط قاطع که به خط مماس نزدیک شده است بدست می آید.پیدا کردن شیب نزدیکترین خط متقاطع به خط مماس با استفاده از کوچکترین h در فرمول زیر حاصل میشود:

http://daneshnameh.roshd.ir/mavara/img/daneshnameh/math/8826c2b073c8ae497999a9ce72a837d4.png

عکس پیدا نشد بزرگنمایی خط مماس بر یک نقطه روی خط
در این فرمول h به عنوان کوچکترین تغییر متغیر x تعریف میشودو میتواند مقدار مثبت یا منفی اختیار کند. در این فرمول شیب خط با استفاده از نقاط http://daneshnameh.roshd.ir/mavara/img/daneshnameh/math/bea76ebb68ee44dc9a2c6d489cc68981.png و http://daneshnameh.roshd.ir/mavara/img/daneshnameh/math/0b12992c9baf551355bfa3fdbb58f5ff.png حاصل میشود.واضح است که در این روش فقط یک نقطه روی خط برای ما معلوم است و نیازی برای بدست آوردن نقطه دوم روی خط وجود ندارد.همچنین در این روش مشتق x ،حاصل حد زیر است:

http://daneshnameh.roshd.ir/mavara/img/daneshnameh/math/a74c59091f3de087c282f81c15dd716c.png


ارتباط مشتق با علم فیزیک

مشتق نقش مهمی در تعریف برخی ار کمیتهای فیزیک حرکت دارد.ما با داشتن موقعیت اجسام بر حسب زمان میتوانیم سرعت و شتاب آنها را محاسبه کنیم.اگر ما از معادله مکان جسم بر حسب زمان مشتق بگیریم معادله سرعت بدست میآید و اگر از معادله سرعت مشتق گیری نماییم(مشتق دوم معادله مکان)معادله شتاب حاصل میشود.


نقاط بحرانی

نقاطی از تابع که به ازای آنها مشتق تابع تعریف نشده و یا برابر صفر باشد را نقاط بحرانی مینامند.اگر مشتق دوم در یک نقطه بحرانی مثبت باشد،آن نقطه مینیمم نسبی است.و اگر منفی باشدماکزیمم نسبی است،و اگر برابر صفر باشد ممکن است ماکزیمم و مینیمم نسبی نباشد.مشتق گرفتن و بدست آوردن نقاط بحرانی،اغلب ساده ترین راه برای پیدا کردن مینیمم و ماکزیمم نسبی است.(در بهینه سازی (http://daneshnameh.roshd.ir/mavara/mavara-index.php?page=%D8%A8%D9%87%DB%8C%D9%86%D9%87+%D8% B3%D8%A7%D8%B2%DB%8C) نیز این روش بسیار مفید است.به طور کلی مینیمم و ماکزیمم نسبی فقط میتوانند جزئ نقاط بحرانی باشند.


تجزیه و تحلیل نمودارها

مشتق ابزار مناسبی برای آزمودن نمودار تابع است. نقاطی از دامنه تابع که به ازای آنها مشتق اول برابر صفر شود میتوانند نقاط اکسترمم (http://daneshnameh.roshd.ir/mavara/mavara-index.php?page=%D8%A7%DA%A9%D8%B3%D8%AA%D8%B1%D9%8 5%D9%85) نسبی تابع باشند.البته باید توجه کرد که تمام نقاط بحرانی نقاط اکسترمم نسبی نیستند.برای مثال تابع http://daneshnameh.roshd.ir/mavara/img/daneshnameh/math/5bc15af7e9cb18078c7fcd9fceed9d5e.png یک نقطه بحرانی در x=0 دارد، ولی میتوان از نمودار تابع متوجه این نکته شد که تابع در این نقطه دارای ماکزیمم یا مینیمم نسبی نیست.
آزمون مشتق اول و آزمون مشتق دوم ، روش هایی را برای تشخیص نقاط ماکزیمم و مینیمم نسبی فراهم میکند.لازم به ذکر است در فضاهای چند بعدی نقاط اکسترمم را با استفاده از مشتقات جزئی (http://daneshnameh.roshd.ir/mavara/mavara-index.php?page=%D9%85%D8%B4%D8%AA%D9%82%D8%A7%D8%A A+%D8%AC%D8%B2%D8%A6%DB%8C) بدست میآورند.

استفاده از تمامی مطالب سایت تنها با ذکر منبع آن به نام سایت علمی نخبگان جوان و ذکر آدرس سایت مجاز است

استفاده از نام و برند نخبگان جوان به هر نحو توسط سایر سایت ها ممنوع بوده و پیگرد قانونی دارد