PDA

توجه ! این یک نسخه آرشیو شده میباشد و در این حالت شما عکسی را مشاهده نمیکنید برای مشاهده کامل متن و عکسها بر روی لینک مقابل کلیک کنید : ترانسفورماتور و آزمایش بارداری آن



Amir
1st October 2008, 04:27 AM
ترانسفورماتورها يكي از مهمترين عناصر شبكه هاي انتقال و توزيع هستند . در ترانسفورماتورها انرژي الكتريكي در مس سيم پيچها ، آهن هسته ، تانك ترانس و سازه هاي نگهدارنده بصورت حرارت تلف مي شود. حتي در زمانيكه ترانسفورماتور بدون بار است ، در هسته تلفات بي باري (NLL) بوجود مي آيد. در نتيجه مطالعات و بررسيهاي انجام شده ، در 50 ساله اخير محققان موفق شده اند با صرف هزينه اي دو برابر براي هسته ، تلفات بي باري را به يك سوم كاهش دهند. اخيراً با جايگزيني فلزات بيشكل و غير بلوري (Amorphous) بجاي آهن سيليكوني درهسته ترانسفورماتورهاي توزيع با قدرت نامي كوچكتر از 100 KVA ، تلفات بي باري باز هم كاهش يافته است . اين كار هنوز در مورد ترانسفورماتورهاي بزرگ با قدرت نامي بزرگتر از 500KVA انجام نشده است . اگرچه براي هر ترانسفورماتور ، 1 درصد توان نامي آن بعنــوان توان تلفـاتي در نظر گرفتـه مي شود، اما بايد توجه داشت كه آزاد سازي بخش كوچكي از اين تلفات در طول عمر ترانسفورماتور صرفه جوئي كلاني به همراه خواهد داشت . در ترانسفورماتورهاي قدرت معمول ، تقريباً 80% از كل تلفات ، مربوط به تلفات بارداري ترانسفورماتور (LL) است كه از اين 80% ، سهم تلفات اهمي سيم پيچها 80 % بوده و 20 % ديگر مربوط به تلفات ناشي از جريانهاي فوكو و شارهاي پراكنده است . لذا تلاشهاي زيادي جهت كاهش تلفات بارداري صورت مي گيرد. در ابررساناها بعلت عدم وجود مقاومت اهمي در برابر جريان d c تلفات اهمي برابر با صفر است . لذا با استفاده از ابررساناها در ترانسفورماتورها، تلفات كل ترانسفورماتور، كاهش قابل ملاحظه اي خواهد يافت. در مقابل جريان ac ، در ابر رساناها تلفاتي از نوع تلفات فوكو رخ مي دهد. گرماي بوجود آمده از اين تلفات بايد با استفاده از سيستم هاي خنك كننده دفع گردد.بررسيهاي بعمل آمده حاكي از آن است كه ترانسفورماتورهاي ابررسانا با قدرت 10 MVA و بالاتر عملكرد نسبتا بهتري داشته و نسبت به ترانسفورماتورهاي معمولي قيمت پايينتري خواهند داشت .
تلاشهايي كه جهت توسعه ترانسفورماتورهاي ابررسانا انجام مي گيرد صرفاً بخاطر مسايل اقتصادي و كاهش هزينه كل نيست. يكي ديگر از دلايل طرح اين مبحث آنست كه در مراكز پر تراكم شهري، رشد مصرف 2 درصدي (ساليانه ) به معني نياز به ارتقاء ظرفيت سيستم هاي موجود است . از طرفي بسياري ازپستهاي توزيع بصورت سرپوشيده (Indoor) بوده و در كنار ساختمانها نصب شده اند. در اين نوع پست ها همانند ديگر پستهاي توزيع از ترانسهاي روغني استفاده ميشود كه استفاده از روغن مشكلات و خطرات زيست محيطي و ايمني مربوط به خود را دارد. در حاليكه در ترانسفورماتورهاي ابررسانا، ماده خنك كننده نيتروژن است كه خطري براي افراد و موجودات زنده نداشته ، بعلاوه ، خطر آتش سوزي نيز وجود ندارد. بهمين لحاظ خنك كننده مورد استفاده در ترانسفورماتورهاي ابررسانا به هيچ عنوان قابل مقايسه با روغنهاي قابل اشتعال و مواد شيميايي همچون PCB نيست .
توجه جدي به ترانسفورماتورهاي ابررسانا از زمان شناخت ابررساناهاي دماي پايين LTS ( اعم از Nb-Ti و Nb3-Sn ) از اوايل دهه 1960 ، آغاز شد. مطالعاتي كه در آن زمان بر روي اين ترانسفورماتورها انجام شد ، نشان داد كه جهت بهره برداري از اين ترانسفورماتورها، بايد آنها را در دماي 4 .2K نگه داشت كه انجام چنين كاري اقتصادي نيست . بهمين دليل گامها بسوي كشف موادي با قابليت ابررسانايي در دماهاي بالاتر ، برداشته شد. در اواسط دهه 1970 ، شركت Westing House ، طرح يك ترانسفورماتور نيروگاهي 550/22kv , 1000MVA را مورد مطالعه قرار داد و به اين نتيجه رسيد كه مشكلاتي از قبيل انتقال جريان ، عملكرد فوق جريان (Overcurrent) و حفاظت همچنان وجود خواهند داشت .
از سال 1980 ، توسعه ترانسفورماتورهاي LTS توسط شركت هاي GEC-Alsthom , ABB ، در اروپا و چند شركت صنعتي و مركز دانشگاهي در ژاپن، مورد پيگيري قرار گرفت . پيشرفت هاي بعمل آمده در توليد هاديهاي طويل Nb-Ti و مواد با مقاومت بالا (Cu-Ni) بر كاهش تلفات ac تاثير زيادي داشته است . مساله عملي بودن كاهش وزن و افزايش راندمان نيز بر روي ترانسفورماتورهاي با قدرتهاي كمتر از 100KVA (تكفاز 80KVA Alsthom) ، (Toshiba)30KVA و سه فاز 40KVA (دانشگاه Osaka) مورد بررسي قرار گرفت . هم چنين ترانسفورماتورهاي بزرگتري نيز ساخته شده و آزمايشهاي مربوطه را با موفقيت پشت سر گذاشتند. در يك ترانسفورماتور تكفاز 330KVA ساخت ABB پيش بيني هاي لازم براي محدود سازي جريان خطا و حفاظت در برابر يخ زدگي در نظر گرفته شد. شركت برق Kansai Electric نيز گزارشي از ترانسفورماتور LTS با هادي Nb3Sn با قدرت 2000 KVA ارائه نموده است





با روند رو به رشد مصرف انرژي الكتريكي در قرن بيست و يكم ، شركت برق توكيو (TEPCO) تصميم به توسعه شبكه انتقال 1000 كيلوولت داشته و لذا در حال حاضر مشغول آزمايش هاي ميداني تجهيزات 1000 كيلوولت در پست (شين هارونا) مي باشد. در اين راستا براي تامين تجهيزات مورد نياز سيستم قدرت 1000 كيلوولت با همكاري شركت ميتسوبيشي الكتريك ( كارخانه آكو ) يك اتو ترانسفورماتور تكفاز نوع shell يا زرهي با تنظيم كننده ولتاژ تحت بار (LVR) طراحي و ساخته شده كه در متن حاضر به معرفي مشخصات ، ساختمان، آزمايش ها و چگونگي حمل و نقل آن پرداخته مي شود. در حالت سه فاز ظرفيت سيم پيچ هاي اوليه و ثانويه 3000 مگاولت آمپر و ظرفيت سيم پيچ ثانويه آن داراي ظرفيت 1200 مگاولت آمپر مي باشد كه براي تامين بار راكتيو مورد نياز خطوط 1000 كيلوولت در نظر گرفته شده است . براي اينكه در حين اتصال كوتاه با جريان هاي شديدي درگير نباشيم و تجهيزات منصوبه غير عادي نباشند به جاي اينكه همانند ترانسفورماتور 500 كيلوولت سمت ثالثيه را 63 كيلوولت انتخاب كنيم ، از سطح ولتاژ 147 كيلوولت استفاده مي كنيم.
براي اين ترانس امپدانس درصد، 18 درصد انتخاب شده است، كه از يك طرف ماكزيمم پايداري را براي شبكه ايجاد نمايد و از طرف ديگر جريان اتصال كوتاه محدود ميشود و در نهايت يك طرح اقتصادي براي ترانسفورماتور انتخاب شده است . اين ترانسفورماتور داراي 27 تپ در بازه هاي ولتاژ خط 6/1136 كيلوولت تا 6/986 كيلوولت بوده و براي بررسي قدرت عايقي آن در برابر اضافه ولتاژهاي گذرا، آزمايش هاي ولتاژ ايستادگي در فركانس قدرت با شرايط و آزمايش ولتاژ ايستادگي(در اوليه 1950 كيلوولت و در ثانويه 1300 كيلوولت) انجام شده است. در آزمايشهاي بالا E ولتاژ

فازي معادل مي باشد. براي رعايت شرايط زيست محيطي سطح صداي قابل قبول 65 دسي بل براي آن در نظر گرفته شده كه براي كنترل اين سطح ازصفحات چند صداي فلزي در ترانسفورماتور استفاده شده است خنك سازي اين ترانسفورماتور با روغن و هواي تحت فشار انجام مي گيرد. از آنجا كه هر ترانسفورماتور 1000 كيلوولت هم از نظر ولتاژ و هم از نظر ظرفيت معادل دو برابر ترانسفورماتور 500 كيلوولت ميباشد و از طرفي بيشتر سيستم هاي حمل و نقل ريلي و دريائي و يا فضايي در حد يك ترانس 500 كيلوولت ميباشند ، لذا اين ترانس به دو واحد كه هر واحد ظرفيت و حجم يك ترانس 500 كيلوولت را دارد تقسيم مي شود. در ترانس تهيه شده هر واحد در حالت تكفاز ظرفيت 3/1500 مگاولت آمپر و هر كدام تنظيم كننده ولتاژ جداگانه داشته و در محل نصب اين دو واحد از طريق يك داكت T شكل با بوشينگ روغن – گاز با هم موازي مي شوند. براي كاهش عايق ها و در نتيجه كاهش حجم ترانسفورماتور طراحي سيم پيچي و عايق ها بايد به گونه اي باشد كه شدت ميدان الكتريكي تا حد ممكن كاهش يافته و درجه خلوص روغن ترانس نيز تا حد ممكن بالا باشد. براي بارگيري در كشتي، متعلقات هر ترانسفورمرز نظير واحدهاي خنك كنندگي و ساير بخش هاي آن جدا شده و در فضايي با طول 8 متر ، عرض 3 متر و ارتفاع 4 متر قرار داده مي شوند. عموما بارگيري به گونه اي است كه براي مسافت هاي طولاني در حد 1000 كيلومتر هيچگونه آسيبي به واحد نرسد.

mandir
11th November 2008, 09:17 PM
آيا مطالبي در مورد آزمايش بارداري ترانس تكفاز (تنظيم ولتاژ) موجود مي باشد

Amir
15th August 2009, 10:51 PM
تو اين لينك دو تا جزوه رو دانلود كن چون عملي تره فك كنم جواب دقيق تري برات داشته باشه

http://dalbablog.wordpress.com/2009/08/01/azemashin12_jozveh/

استفاده از تمامی مطالب سایت تنها با ذکر منبع آن به نام سایت علمی نخبگان جوان و ذکر آدرس سایت مجاز است

استفاده از نام و برند نخبگان جوان به هر نحو توسط سایر سایت ها ممنوع بوده و پیگرد قانونی دارد