PDA

توجه ! این یک نسخه آرشیو شده میباشد و در این حالت شما عکسی را مشاهده نمیکنید برای مشاهده کامل متن و عکسها بر روی لینک مقابل کلیک کنید : ساختمان و اساس کار ژنراتور



ریپورتر
29th March 2010, 10:51 AM
مقدمه

هدف از انجام این تحقیق بررسی سیر تحقیقات انجام شده با موضوع ژنراتورها(ساختمان و اساس کار و سیر تکاملی ژنراتوها بخصوص ژنراتور های سنکرون ) است . به این منظور ، بررسی مقالات منتشر شده که با این موضوع مرتبط بودند و جمع آوری خلاصه مطالبی از منابع صورت گرفت و بعد چکیده آنها استخراج شد .
ژنراتورها همواره یکی از مهمترین عناصر شبکه قدرت بوده و نقش کلیدی در تولید انرژی و کاربردهای خاص دیگر ایفاء کرده است. ساخت اولین نمونه ژنراتور (سنکرون) به انتهای قرن 19 برمی گردد. مهمترین پیشرفت انجام شده در آن سالها احداث اولین خط بلند انتقال سه فاز از لافن به فرانکفورت آلمان بود. در کانون این تحول ، یک هیدروژنراتور سه فاز 210 کیلو وات قرار گرفته بود. عیلرغم مشکلات موجود در جهت افزایش ظرفیت و سطح ولتاژ ژنراتورها، در طول سالهای بعد تلاشهای گسترده ای برای نیل به این هدف صورت گرفت. مهمترین محدودیتها در جهت افزایش و سطح ولتاژ ژنراتورها ، ضعف عملکرد سیستمهای عایقی و نیز روشهای خنک سازی بود .در راستای رفع این محدودیتها ترکیبات مختلف عایقهای مصنوعی، استفاده از هیدروژن برای خنک سازی و بهینه سازی روشهای خنک سازی با هوا نتایج موفقیت آمیزی را در پی داشت به نحوی که امروزه ظرفیت ژنراتورها به بیش از 1600DC افزایش یافته است.
در جهت افزایش ولتاژ ، ابداع پاورفرمر در انتهای قرن بیستم توانست سقف ولتاژ تولیدی را تا حدود سطح ولتاژ انتقال افزایش دهد. به نحوی که برخی محققان معتقدند در سالهای نه چندان دور ، دیگر نیازی به استفاده از ترانسفورماتورهای افزاینده نیروگاهی نیست.
همچنین امروزه تکنولوژی ژنراتورهای ابررسانا بسیار مورد توجه است، انتظار می رود با گسترش این تکنولوژی در ژنراتورهای آینده ، ظرفیتهای بالاتر در حجم کمتر قابل دسترسی باشند.
ژنراتورها:

ماشین هایی هستند که انرژی مکانیکی را از محرک اصلی به یک توان الکتریکی در ولتاژ و فرکانس خاصی تبدیل می نماید.کلمه سنکرون به این حقیقت اشاره دارد که فرکانس الکتریک این ماشین با سرعت گردش مکانیکی شفت قفل شده است ،ژنراتورسنکرون برای تولید بخش اعظم توان الکتریکی در سرتاسر جهان به کار می رود.
دو اصل فیزیکی مرتبط با عملکرد ژنراتورها وجود دارد. اولین اصل فیزیکی اصل القائی الکترومغناطیسی کشف شده توسط مایکل فاراده دانشمند بریتانیایی است. اگر یک هادی در یک میدان مغناطیسی حرکت کند یا اگر طول یا حلقه ی القائی ساکنی جهت تغییر استفاده شود. یک جریان ایجاد میشود یا القاء می شود. اگر یک جریان از میان یک کنتاکتور که در میدان مغناطیسی قرار گرفته ، عبور کند میدان ، نیروی مکانیکی بر آن وارد می کند.
ژنراتور ها دارای دو اصل هستند: قسمتها و میدان که آهنربای الکترو مغناطیسی با سیم پیچ هایش و آرمیچر و ساختاری که از کنتاکتورحمایت می کند و کار قطع میدان مغناطیسی و حمل جریان القاء شده ژنراتور یا جریان ناگهانی به موتور را دارد است . آرمیچر معمولا" هسته ی نرم آهنی اطراف سیم های القائی که دور سیم پیچ ها پیچیده شده اند ، است .
ژنراتور ها از دو قسمت تشکیل شده اند: قسمت متحرک را رتور و قسمت ساکن آن را استاتور می گویند . رتور ها نیز از نظر ساختمان دو دسته اند: ماشین های قطب صاف و ماشین های قطب برجسته.
همچنین ژنراتورها بسته به آنکه نوع وسیله گرداننده رتور آنها چه نوع توربینی باشد به صورت زیر تقسیم می شوند:
1-توربو ژنراتورها:
در این وسیله گرداننده رتور ، توربین بخار است و چون توربین بخار جزء ماشین های تند گرد است بنابراین توربوژنراتور دارای قطب های صاف بوده و این ماشین توانائی ایجاد دورهای بسیاربالا را در قدرت های زیاد دارد امروزه اغلب توربوژنراتورها را دو قطبی می سازند چون با افزایش سرعت گردش کار توربین های بخار با صرفه تر وارزان ترتمام می شود.
2-هیدرو ژنراتور ها :
در آن وسیله گرداننده رتور توربین آبی است و چون توربین آبی دارای دور کم است بنابراین هیدروژنراتور دارای قطب برجسته بوده و دارای سرعت کم می باشد.
3-دیزل ژنراتور ها :
در قدرت های کوچگ و اظطراری وسیله گرداننده رتور دیزل است که در این موره هم قطب های رتور آن برجسته می باشد.
ساختمان و اساس کار ژنراتور سنکرون:

در یک ژنراتور سنکرون یک جریان DC به سیم پیچ رتور اعمال می گردد تا یک میدان مغناطیسی رتور تولید شود. سپس رتور مربوط به ژنراتور به وسیله محرک اصلی چرخانده میشود ، تا یک میدان مغناطیسی دوار در ماشین بوجود آید.این میدان مغناطیسی ، یک ولتاژ سه فاز را در سیم پیچ های استاتور ژنراتور القاء می نماید.
در یک ماشین دو عبارت در توصیف سیم پیچ ها بسیار مورد استفاده است یکی سیم پیچ های میدان و دیگری سیم پیچ های آرمیچر. بطور کلی عبارت سیم پیچ های میدان به سیم پیچ هایی گفته می شود که میدان مغناطیسی اصلی را در ماشین تولید می نماید و عبارت سیم پیچ های آرمیچر به سیم پیچ هایی اتلاق می شود که ولتاژ اصلی در آن القاء می شود . برای ماشین های سنکرون ، سیم پیچ های میدان در رتور است.
رتور ژنراتور سنکرون در اصل یک آهنربای الکتریکی بزرگ است . قطب های مغناطیسی در رتور می تواند از نوع برجسته یا غیر برجسته باشد . کلمه برجسته به معنی قلمبیده است و قطب برجسته ، یک قطب مغناطیسی خارج شده از سطح رتور می باشد. ازطرف دیگر ، یک قطب برجسته یک قطب مغناطیسی هم سطح با سطح رتور است . یک رتور غیر برجسته یا صاف معمولا" برای موارد 2 یا 4 قطبی بکار می روند . در حالی که رتورهای برجسته برای 4 قطب یا بیشتر مورد استفاده هستند. چون در رتور میدان مغناطیسی متغیر است برای کاهش تلفات ، آن را از لایه های نازک می سازند. به مدار میدان در رتور باید جریان ثابتی اعمال شود ، چون رتور می چرخد ، نیاز به آرایش خاصی برای رساندن توان DC به سیم پیچ های میدانش دارد برای انجام این کار 2 روش موجود است :
1- تهیه توان DC از یک منبع بیرونی به رتور با رینگ های لغزان و جاروبک .
2- فراهم نمودن توان DC از یک منبع توان DC که مستقیما" روی شفت ژنراتورهای سنکرون نصب می شود.
ساختمان و اساس کار ژنراتور سنکرون

در یک ژنراتور سنکرون یک جریان dc به سیم پیچ رتور اعمال می گردد تا یک میدان مغناطیسی رتور اعمال می گردد تا یک میدان مغناطیسی رتور اعمال می گردد تا یک میدان مغناطیسی رتور تولید شود. سپس روتور مربوط به ژنراتور به وسیله یک محرک اصلی چرخاند می شود، تا یک میدان مغناطیسی دوار در ماشین به وجود آید . این میدان مغناطیسی یک ولتاژ سه فاز را در سیم پیچ های استاتور ژنراتور القاء می نماید.
در یک ماشین دو عبارت در توصیف سیم پیچ ها بسیار مورد استفاده است: یکی سیم پیچ های میدان و دیگری سیم پیچ های آرمیچر. بطور کلی عبارت سیم پیچ ها ی میدان به سیم پیچ هایی گفته می شود که میدان مغناطیسی اصلی را در ماشین تولید می کند. عبارت سیم پیچ های آرمیچر به سیم پیچ هایی اطلاق می شود که ولتاژ اصلی در آن القاء می شود برای ماشین های سنکرون، سیم پیچ های میدان در رتور است.
روتور ژنراتور سنکرون در اصل یک آهن ربای الکتریکی بزرگ است. قطب های مغناطیسی در رتور می تواند از نوع برجسته و غیر برجسته باشد. کلمه برجسته به معنی (قلمبیده )است و قطب برجسته یک قطب مغناطیسی خارج شده از سطح رتور می باشد. از طرف دیگر یک قطب برجسته، یک قطب مغناطیسی هم سطح با سطح رتور است. یک رتور غیر برجسته یا صاف معمولاً برای موارد 2 یا چهار قطبی به کار می روند. در حالی که رتور های برجسته برای 4 قطب یا بیشتر مورد استفاده هستند. چون در رتور میدان مغناطیسی متغییر است برای کاهش تلفات، آن را از لایه های نازک می سازند. به مدار میدان در رتور باید جریان ثابتی اعمال شود. چون رتور می چرخد نیاز به آرایش خاصی برای رساندن توان DC به سیم پیچ های میدانش دارد.برای انجام این کار 2 روش موجود است :
1- از یک منبع بیرونی به رتور با رینگ های لغزان و جاروبک .
2- فراهم نمودن توان DCاز یک منبع توان DC ، که مستقیما" روی شفت ژنراتورسنکرون نصب میشود.
رینگ های لغزان بطور کامل شفت ماشین را احاطه می کنند ولی از آن جدا هستند. یک انتهای سیم پیچ DC به هر یک از دو انتهای رینگ لغزان در شفت موتور سنکرون متصل است و یک جاروبک ثابت روی هررینگ لغزان سر می خورد . جاروبک ها بلوکی از ترکیبات گرافیک مانند هستند که الکتریسیته را به راحتی هدایت می کنند ولی اصطکاک خیلی کمی دارند و لذا روی رینگ ها خوردگی بوجود نمی آورد. اگر سمت مثبت منبع ولتاژ DC به یک جاروبک و سر منفی به جاروبک دیگروصل می شود. آنگاه ولتاژ ثابتی به سیم پیچ ، جدااز مکان و سرعت زاویه ای آن ، میدان درتمام مدت اعمال می شود. رینگ های لغزان و جاروبک ها به هنگام اعمال ولتاژ DC چند مشکل برای سیم پیچ های میدان ماشین سنکرون تولید می کنند آنها نگهداری را در ماشین افزایش می دهند ، زیرا جاروبک بایدمرتبا" به لحاظ سائیدگی چک شود. علاوه برآن ، افت ولتاژ جاروبک ممکن است تلفات قابل توجه توان را همراه با جریان های میدان به دنبال داشته باشد . علیرغم این مشکلات رینگ های لغزان روی همه ماشین های سنکرون کوچک تر بکار میرود. زیرا راه اقتصادی تر برای اعمال جریان میدان موجود نیست .
در موتور ها و ژنراتورهای بزرگ تر ، از محرک های بی جاروبک استفاده می شود تا جریان میدان DC را به ماشین برسانند یک محرک بی جاروبک ، یک ژنراتور AC کوچکی است که مدار میدان آن روی استاتور و مدار آرمیچر آن روی رتور نصب است خروجی سه فاز ژنراتور محرک یکسو شده و جریان مستقیم توسط یک مدار یکسو ساز سه فاز که روی شفت ژنراتور نصب است حاصل می شود که بطور مستقیم به مدار میدان DC اصلی اعمال میگردد. با کنترل جریان میدان DC کوچکی از ژنراتور محرک (که روی استاتور نصب می شود) می توان جریان میدان را روی ماشین اصلی و بدون استفاده از رینگ های لغزان و جاروبک ها تنظیم کرد. چون اتصال مکانیکی هرگز بین رتور و استاتور بوجود نمی آید ، یک محرک جاروبک نسبت به نوع حلقه های لغزان و جاروبک ها ، به نگهداری کمتری نیاز دارد. برای اینکه تحریک ژنراتور بطور کامل مستقل از منابع تحریک بیرونی باشد، یک محرک پیلوت کوچکی اغلب در سیستم لحاظ میگردد . محرک پیلوت ، یک ژنراتور AC کوچک با مگنت های (آهن ربا ) دائمی نصب شده بر روی شفت رتور و یک سیم پیچ روی استاتور است . این محرک انرژی را برای مدار میدان محرک بوجود می آورد که این به نوبه خود مدار میدان ماشین اصلی را کنترل می نماید . اگر یک محرک پیلوتروی شفت ژنراتور نصب شود آن گاه هیچ توان الکتریکی خارجی برای راندمان ژنراتور لازم نیست .
بسیاری از ژنراتور های سنکرون که دارای محرک های بی جاروبک هستند ، دارای رینگ های لغزان و جاروبک نیز هستند بنابراین یک منبع اضافی جریان میدان DC در موارد اضطراری در اختیار است . استاتور ژنراتور های سنکرون معمولا" در دو لایه ساخته می شوند : خود سیم پیچ توزیع شده و گام های کوچک دارد تا مولفه های هارمونیک ولتاژ ها و جریان های خروجی را کاهش دهد .
چون رتور باسرعتی برابر باسرعت میدان مغناطیسی می چرخد ، توان الکتریکی با فرکانس 50 یا 60 هرتز تولید می شود و از ژنراتور بسته به تعداد قطب ها باید با سرعت ثابتی بچرخد مثلا" برای تولید توان 60هرتز در یک ماشین دو قطب رتور باید با سرعت 3600 دور در دقیقه بچرخد . برای تولید توان 50هرتز در یک ماشین 4 قطب ، رتور باید با سرعت 1500 دور دردقیقه دوران کند . سرعت مورد نیاز یک فرکانس مفروض همیشه از معادله زیر قابل محاسبه است :
Fe : فرکانس
=v سرعت مکانیکی
= P تعداد قطب ها
ولتاژ القایی در استاتور به شار در ماشین ، فرکانس یا سرعت چرخش ، و ساختمان ماشین بستگی دارد . ولتاژ تولیدی داخلی مستقیما" متناسب با شار و سرعت است ولی خود شار به جریان جاری در مدار میدان رتور بستگی دارد. .ولتاژ درونی برابر ولتاژ خروجی نیست چندین فاکتور ، عامل اختلاف بین این دو هست :
1-اعوجاج موجود در میدان مغناطیسی فاصله هوا به علت جریان جاری در استاتور که به آن عکس العمل آرمیچر می گویند.
2- خود القایی بوبین های آرمیچر
3-مقاومت بوبین های آرمیچر
4-تاثیر شکل قطب ها ی برجسته رتور
وقتی یک ژنراتور کار می کند و بار های سیستم را تغذیه می کند آنگاه :
1-توان مستقیم و رآکتیو تولیدی بوسیله ژنراتور برابر با مقدار توان تقاضا شده بوسیله بار متصل شده به آن است .
2-نقاط تنظیم گاورنر ژنراتور ، فرکانس کار سیستم قدرت را کنترل می نماید.
3-جریان میدان ( یانقاط تنظیم رگولاتور میدان ) ولتاژ پایانه سیستم قدرت را کنترل می نماید.
این وضعیتی است که در ژنراتورهای جدا و به فواصل دور از هم وجود دارد.
مولد های AC یا آلترناتورها:

مولد های AC یا آلترناتورها درست مثل مولدهای DC براساس القاء الکترومغناطیس کار می کنند ، آنها نیز شامل یک سیم پیچ آرمیچر و یک میدان مغناطیسی هستند اما یک اختلاف مهم بین این دو وجود دارد ، در حالی که در ژنراتورهای DC آرمیچر چرخیده می شود و سیستم میدان ثابت است در آلترناتورها آرایش عکس وجود دارد.
آلترناتورها یک ژنراتور ساده بدون کموتاتور ، یک جریان الکتریکی متناوب تولید می کنند ، چنین جریان متناوبی مزیت زیادی دارد برای انتقال توان الکتریکی و از این رو بیشتر ژنراتورهای الکتریکی بزرگ از نوع AC هستند. ژنراتور AC در دو حالت خاص با ژنراتور DC فرق می کند . پایانه های سیم پیچ آرمیچرش بیرون هستند . برای حلقه های لغزان جزئی شده ی جامد روی شفت (میله ) ژنراتور به جای کموتاتور و سیم پیچ های میدان توسط یک منبع DC خارجی تغذیه انرژی می شود تااینکه توسط خود ژنراتور این کار انجام شود . ژنراتور ها ی AC سرعت پایینی با تعداد زیادی قطب در حدود 100 قطب ساخته می شوند. هم برای بهبود بازه شان و هم برای دست یافتن به فرکانس دلخواه به آسانی . آلترناتورها با توربین های سرعت بالا راه اندازی می شوند . فرکانس جریان گرفته شده توسط ژنراتور AC مساوی است با نیمی از تعداد قطبها و تعداد چرخش آرمیچر در ثانیه.
بخاطر احتمال جرقه زنی بین جاروبک ها و حلقه های لغزان و خطر شکستهای مکانیکی که ممکن است سبب اتصال کوتاه شود. آلترناتورها به یک سیم پیچ ساکن که بدور یک رتور می چرخد و این رتور شامل تعدادی آهنربای مغناطیسی میدان هستند ساخته می شوند. اصل عملکرد آنها نیز دقیقا" مشابه عملکرد ژنراتورهای AC توصیف شده اند.
ژنراتور ها با ولتاژ بالا:

شركت ABB اخيرا ژنراتوري با ولتاژ بالا ابداع كرده است . اين ژنراتور بدون نياز به ترانسفورماتور افزاينده بطور مستقيم به شبكه قدرت متصل مي گردد . ايده جديد بكار گرفته شده در اين طرح استفاده از كابل به عنوان سيم پيچ استاتور مي باشد . ژنراتور ولتاژ بالا براي هر كاربرد در نيروگاههاي حرارتي و آبي مناسب مي باشد . راندمان بالا ، كاهش هزينه هاي تعمير و نگهداري ، تلفات كمتر ، تأثيرات منفي كمتر بر محيط زيست ( با توجه به مواد بكار رفته ) از مزاياي اين نوع ژنراتور مي باشد . ژنراتور ولتاژ بالا در مقايسه با ژنراتورهاي معمولي در ولتاژ بالا و جريان پائين كار مي كند . ماكزيمم ولتاژ خروجي اين ژنراتور با تكنولوژي كابل محدود مي گردد كه در حال حاضر با توجه به تكنولوژي بالاي ساخت كابلها ميتوان ولتاژ آنرا تا سطح 400 كيلو ولت طراحي نمود . هادي استفاده شده در ژنراتور ولتاژ بالا بصورت دوار مي باشد در حاليكه در ژنراتورهاي معمولي اين هادي بصورت مثلثي مي باشد در نتيجه ميدان الكتريكي در ژنراتورهاي ولتاژ بالا يكنواخت تر مي باشد . ابعاد سيم پيچ بر اساس ولتاژ سيستم و ماكزيمم قدرت ژنراتور تعيين مي گردد . در ژنراتورهاي ولتاژ بالا لايه خارجي كابل در تمام طول كابل زمين مي گردد ، اين امر موجب مي شود كه ميدان الكتريكي در طول كابل محدود گردد و ديگر مانند ژنراتورهاي معمولي نياز به كنترل ميدان در ناحيه انتهايي سيم پيچ نباشد .
جزيي ( Partialdischarge) در هيچ ناحيه اي از سيم پيچ وجود ندارد و همچنين ايمني افراد بهره بردار و يا تعميركار افزايش مي يابد . سربنديها و اتصالات معمولا در فضاي خالي مورد دسترس در محل انجام مي گيرد ، بنابراين محل اين اتصالات در يك نيروگاه نسبت به نيروگاه ديگر متفاوت مي باشد ، اما در هر حال اين اتصالات در خارج از هسته استاتور مي باشد ، براي مثال اتصالات و سربنديها ممكن است زير ژنراتور و يا خارج از قاب استاتور ( Statorframe ) انجام گيرد . بدين ترتيب اتصالات و سربنديها ، مشكلات ناشي از ارتعاشات و لرزش هاي بوجود آمده در ماشين هاي معمولي را نخواهند داشت .
در طرح كنوني ژنراتور ولتاژ بالا دو نوع سيستم خنك كنندگي وجود دارد ، روتور و سيم پيچ هاي انتهايي توسط هوا خنك مي گردند در حاليكه استاتور توسط آب خنك مي گردد . سيستم خنك كنندگي آب شامل لوله هاي XLPE قرار گرفته شده در هسته استاتور مي باشد كه آب از اين لوله ها جريان مي يابد و هسته استاتور را خنك نگه مي دارد .
مقايسه جريان اتصال كوتاه در نيروگاه مجهز به ژنراتور ولتاژ بالا با نيروگاه مجهز به ژنراتور معمولي نشان مي دهد كه به دليل اينكه در نيروگاه با ژنراتور ولتاژ بالا راكتانس ترانسفورماتور حذف مي گردد جريانهاي خطا كوچكتر مي باشد .
سير تكاملي ژنراتورهاي سنكرون

(از ابتدا تا پايان دهه 1980)
هدف از انجام اين تحقيق بررسي سير تحقيقات انجام شده با موضوع طراحي ژنراتور سنكرون است. به اين منظور، بررسي مقالات منتشر شده IEEE كه با اين موضوع مرتبط بودند، در دستور كار قرار گرفت. به عنوان اولين قدم كليه مقالات مرتبط در دهه‌هاي مختلف جستجو و بر مبناي آنها يك تقسيم‌بندي موضوعي انجام شد. سپس سعي شد بدون پرداختن به جزييات، سيرتحولات استخراج‌ شود. رويكرد كلي اين بوده است كه تحولات داراي كاربرد صنعتي بررسي شود.
با توجه به گستردگي موضوع و حجم مطالب، اين گزارش در دو بخش ارايه شده است. در بخش اول ابتدا پيشرفتهاي اوليه ژنراتورهاي سنكرون از آغاز تا دهه 1970 بررسي شده است و در ادامه تحولات دهه‌هاي 1970 و 1980 به تفصيل مورد توجه قرار گرفته‌اند. در پايان هر دهه يك جمعبندي از كل فعاليتهاي صورت گرفته ارايه و سعي شده است ارتباط منطقي پيشرفتهاي هر دهه با دهه‌هاي قبل و بعد بيان شود.
ماشين سنكرون همواره يكي از مهمترين عناصر شبكه قدرت بوده و نقش كليدي در توليد انرژي الكتريكي و كاربردهاي خاص ديگر ايفاء كرده است.
ساخت اولين نمونه ژنراتور سنكرون به انتهاي قرن 19 برمي‌گردد. مهمترين پيشرفت انجام شده در آن سالها احداث اولين خط بلند انتقال سه فاز از لافن به فرانكفورت آلمان بود. دركانون اين تحول؛ يك هيدروژنراتور سه فاز 210 كيلووات قرار گرفته بود.
عليرغم مشكلات موجود در جهت افزايش ظرفيت وسطح ولتاژ ژنراتورها، در طول سالهاي بعد تلاشهاي گسترده‌اي براي نيل به اين مقصود صورت گرفت.
مهمترين محدوديتها در جهت افزايش ظرفيت، ضعف عملكرد سيستمهاي عايقي و نيز روشهاي خنك‌سازي بود. در راستاي رفع اين محدوديتها تركيبات مختلف عايقهاي مصنوعي، استفاده از هيدروژن براي خنك‌سازي و بهينه‌سازي روشهاي خنك‌سازي با هوا نتايج موفقيت‌آميزي را در پي داشت به نحوي كه امروزه ظرفيت ژنراتورها به بيش از MVA1600 افزايش يافته است.
در جهت افزايش ولتاژ، ابداع پاورفرمر در انتهاي قرن بيستم توانست سقف ولتاژ توليدي را تا حدود سطح ولتاژ انتقال افزايش دهد به نحوي كه برخي محققان معتقدند در سالهاي نه چندان دور، ديگر نيازي به استفاده از ترانسفورماتورهاي افزاينده نيروگاهي نيست.
همچنين امروزه تكنولوژي ژنراتورهاي ابررسانا بسيار مورد توجه است. انتظار مي‌رود با گسترش اين تكنولوژي در ژنراتورهاي آينده، ظرفيتهاي بالاتر در حجم كمتر قابل دسترسي باشند.
تاريخچه

ژنراتور سنكرون تاريخچه‌اي بيش از صد سال دارد. اولين تحولات ژنراتور سنكرون در دهه 1880 رخ داد. در نمونه‌هاي اوليه مانند ماشين جريان مستقيم، روي آرميچر گردان يك يا دو جفت سيم‌پيچ وجود داشت كه انتهاي آنها به حلقه‌هاي لغزان متصل مي‌شد و قطبهاي ثابت روي استاتور، ميدان تحريك را تامين مي‌كردند. به اين طرح اصطلاحاً قطب خارجي مي‌گفتند. در سالهاي بعد نمونه ديگري كه در آن محل قرار گرفتن ميدان و آرميچر جابجا شده بود مورد توجه قرار گرفت. اين نمونه كه شكل اوليه ژنراتور سنكرون بود، تحت عنوان ژنراتور قطب داخلي شناخته و جايگاه مناسبي در صنعت‌برق پيدا كرد. شكلهاي مختلفي از قطبهاي مغناطيسي و سيم‌پيچهاي ميدان روي رتور استفاده شد، در حالي كه سيم‌پيچي استاتور، تكفاز يا سه‌فاز بود. محققان بزودي دريافتند كه حالت بهينه از تركيب سه جريان متناوب با اختلاف فاز نسبت به هم بدست مي‌آيد. استاتور از سه جفت سيم‌پيچ تشكيل شده بود كه در يك طرف به نقطه اتصال ستاره و در طرف ديگر به خط انتقال متصل بودند.
در واقع ايده ماشين جريان متناوب سه فاز، مرهون تلاشهاي دانشمندان برجسته‌اي مانند نيكولا تسلا، گاليلئو فراريس، چارلز برادلي، دبروولسكي، هاسلواندر بود.
هاسلواندر اولين ژنراتور سنكرون سه فاز را در سال 1887 ساخت كه تواني در حدود 8/2 كيلووات را در سرعت 960 دور بر دقيقه (فركانس 32 هرتز) توليد مي‌كرد. اين ماشين داراي آرميچر سه فاز ثابت و رتور سيم‌پيچي شده چهار قطبي بود كه ميدان تحريك لازم را تامين مي‌كرد. اين ژنراتور براي تامين بارهاي محلي مورد استفاده قرار مي‌گرفت.
در سال 1891 براي اولين بار تركيب ژنراتور و خط بلند انتقال به منظور تامين بارهاي دوردست با موفقيت تست شد. انرژي الكتريكي توليدي اين ژنراتور توسط يك خط انتقال سه فاز از لافن به نمايشگاه بين‌المللي فرانكفورت در فاصله 175 كيلومتري منتقل مي‌شد. ولتاژ فاز به فاز 95 ولت، جريان فاز 1400 آمپر و فركانس نامي 40 هرتز بود. رتور اين ژنراتور كه براي سرعت 150 دور بر دقيقه طراحي شده بود، 32 قطب داشت. قطر آن 1752 ميليمتر و طول موثر آن 380 ميليمتر بود. جريان تحريك توسط يك ماشين جريان مستقيم تامين مي‌شد. استاتور آن 96 شيار داشت كه در هر شيار يك ميله مسي به قطر 29 ميليمتر قرار مي‌گرفت. از آنجا كه اثر پوستي تا آن زمان شناخته نشده بود، سيم‌پيچي استاتور متشكل از يك ميله براي هر قطب / فاز بود. بازده اين ژنراتور 5/96% بود كه در مقايسه با تكنولوژي آن زمان بسيار عالي مي‌نمود. طراحي و ساخت اين ژنراتور را چارلز براون انجام داد.
در آغاز، اكثر ژنراتورهاي سنكرون براي اتصال به توربينهاي آبي طراحي مي‌شدند، اما بعد از ساخت توربينهاي بخار قدرتمند، نياز به توربوژنراتورهاي سازگار با سرعت بالا احساس شد. در پاسخ به اين نياز اولين توربورتور در يكي از زمينه‌هاي مهم در بحث ژنراتورهاي سنكرن، سيستم عايقي است. مواد عايقي اوليه مورد استفاده مواد طبيعي مانند فيبرها، سلولز، ابريشم، كتان، پشم و ديگر الياف طبيعي بودند. همچنين رزينهاي طبيعي بدست آمده از گياهان و تركيبات نفت خام براي ساخت مواد عايقي مورد استفاده قرارمي‌گرفتند. در سال 1908 تحقيقات روي عايقهاي مصنوعي توسط دكتر بايكلند آغاز شد. در طول جنگ جهاني اولي رزين‌هاي آسفالتي كه بيتومن ناميده مي‌شدند، براي اولين بار همراه با قطعات ميكا جهت عايق شيار در سيم‌پيچهاي استاتور توربوژنراتورها مورد استفاده قرار گرفتند. اين قطعات در هر دو طرف، با كاغذ سلولز مرغوب احاطه مي‌شدند. در اين روش سيم‌پيچهاي استاتور ابتدا با نوارهاي سلولز و سپس با دو لايه نوار كتان پوشيده مي‌شدند. سيم‌پيچها در محفظه‌اي حرارت مي‌ديدند و سپس تحت خلا قرار مي‌گرفتند. بعد از چند ساعت عايق خشك و متخلخل حاصل مي‌شد. سپس تحت خلا، حجم زيادي از قير داغ روي سيم‌پيچ‌ها ريخته مي‌شد. در ادامه محفظه با گاز نيتروژن خشك با فشار 550 كيلو پاسكال پر و پس از چند ساعت گاز نيتروژن تخليه و سيم‌پيچها در دماي محيط خنك و سفت مي‌شدند. اين فرآيند وي پي‌آي ناميده مي‌شد.
در اواخر دهه 1940 كمپاني جنرال الكتريك به منظور بهبود سيستم عايق سيم‌پيچي استاتور تركيبات اپوكسي را برگزيد. در نتيجه اين تحقيقات، يك سيستم به اصطلاح رزين ريچ عرضه شد كه در آن رزين در نوارها و يا وارنيش مورد استفاده بين لايه‌ها قرار مي‌گرفت.
در دهه‌هاي 1940 تا 1960 همراه با افزايش ظرفيت ژنراتورها و در نتيجه افزايش استرسهاي حرارتي، تعداد خطاهاي عايقي به طرز چشمگيري افزايش يافت. پس از بررسي مشخص شد علت اكثر اين خطاها بروز پديده جدا شدن نوار يا ترك خوردن آن است. اين پديده به علت انبساط و انقباض ناهماهنگ هادي مسي و هسته آهني به وجود مي‌آمد. براي حل اين مشكل بعد از جنگ جهاني دوم محققان شركت وستينگهاوس كار آزمايشگاهي را بر روي پلي‌استرهاي جديد آغاز كرده و سيستمي با نام تجاري ترمالاستيك عرضه كردند.
نسل بعدي عايقها كه در نيمه اول دهه 1950 مورد استفاده قرار گرفتند، كاغذهاي فايبرگلاس بودند. در ادامه در سال 1955 يك نوع عايق مقاوم در برابر تخليه جزيي از تركيب 50 درصد رشته‌هاي فايبرگلاس و 50 درصد رشته‌هاي PET بدست آمد كه روي هادي پوشانده مي‌شد و سپس با حرارت دادن در كوره‌هاي مخصوص، PET ذوب شده و روي فايبرگلاس را مي‌پوشاند. اين عايق بسته به نياز به صورت يك يا چند لايه مورد استفاده قرار مي‌گرفت. عايق مذكور با نام عمومي پلي‌گلاس و نام تجاري داگلاس وارد بازار شد.
مهمترين استرسهاي وارد بر عايق استرسهاي حرارتي است. بنابراين سيستم‌هاي عايقي همواره در ارتباط تنگاتنگ با سيستم‌هاي خنك‌سازي بوده‌اند. خنك‌سازي در ژنراتورهاي اوليه توسط هوا انجام مي‌گرفت. بهترين نتيجه بدست آمده با اين روش خنك‌سازي يك ژنراتور MVA200 با سرعت rpm1800 بود كه در سال 1932 در منطقه بروكلين نيويورك نصب شد. اما با افزايش ظرفيت ژنراتورها نياز به سيستم خنك‌سازي موثرتري احساس شد. ايده خنك‌سازي با هيدروژن اولين بار در سال 1915 توسط ماكس شولر مطرح شد. تلاش او براي ساخت چنين سيستمي از 1928 آغاز و در سال 1936 با ساخت اولين نمونه با سرعت rpm3600 به نتيجه رسيد. در سال 1937 جنرال الكتريك اولين توربوژنراتور تجاري خنك شونده با هيدروژن را روانه بازار كرد. اين تكنولوژي در اروپا بعد از سال 1945 رايج شد. در دهه‌هاي 1950 و 1960 روشهاي مختلف خنك‌سازي مستقيم مانند خنك‌سازي سيم‌پيچ استاتور با گاز، روغن و آب پا به عرصه ظهور گذاشتند تا آنجا كه در اواسط دهه 1960 اغلب ژنراتورهاي بزرگ با آب خنك مي‌شدند. ظهور تكنولوژي خنك‌سازي مستقيم موجب افزايش ظرفيت ژنراتورها به ميزان MVA1500 شد.
يكي از تحولات برجسته‌اي كه در دهه 1960 به وقوع پيوست توليد اولين ماده ابررساناي تجاري يعني نيوبيوم- تيتانيوم بود كه در دهه‌هاي بعدي بسيار مورد توجه قرار گرفت.
تحولات دهه 1970

در اين دهه تحول مهمي در فرآيند عايق كاري ژنراتور رخ داد. قبل از سال 1975 اغلب عايقها را توسط رزينهاي محلول در تركيبات آلي فرار اشباع مي‌كردند. در اين فرآيند، تركيبات مذكور تبخير و در جو منتشر مي‌شد. با توجه به وضع قوانين زيست محيطي و آغاز نهضت سبز در اوايل دهه 1970، محدوديتهاي شديدي بر ميزان انتشار اين مواد اعمال شد كه حذف آنها را از اين فرآيند در پي داشت. در نتيجه استفاده از مواد سازگار با محيط زيست در توليد و تعمير ماشينهاي الكتريكي مورد توجه قرار گرفت. استفاده از رزينهاي با پايه آبي يكي از اولين پيشنهاداتي بود كه مطرح شد، اما يك راه‌حل جامعتر كه امروزه نيز مرسوم است، كاربرد چسبهاي جامد بود. در همين راستا توليد نوارهاي ميكاي رزين ريچ بدون حلال نيز توسعه يافت.
از ديگر پيشرفتهاي مهم اين دهه ظهور ژنراتورهاي ابررسانا بود. يك ماشين ابررسانا عموماً‌از يك سيم‌پيچ ميدان ابررسانا و يك سيم‌پيچ آرميچر مسي تشكيل شده است. هسته رتور عموماً آهني نيست، چرا كه آهن به دليل شدت بالاي ميدان توليدي توسط سيم‌پيچي ميدان اشباع مي‌شود. فقط در يوغ استاتور از آهن مغناطيسي استفاده مي‌شود تا به عنوان شيلد و همچنين منتقل كننده شار بين قطبها عمل كند. عدم استفاده از آهن، موجب كاهش راكتانس سنكرون (به حدود pu5/0- 3/0) در اين ماشينها شده كه طبعاً موجب پايداري ديناميكي بهتر مي‌شود. همانطور كه اشاره شد، اولين ماده ابررساناي تجاري نيوبيوم- تيتانيوم بود كه تا دماي 5 درجه كلوين خاصيت ابررسانايي داشت. البته در دهه‌هاي بعد پيشرفت اين صنعت به معرفي مواد ابررسانايي با دماي عملكرد 110 درجه كلوين انجاميد. براين اساس مواد ابررسانا را به دو گروه دما پايين مانند نيوبيوم – تيتانيوم و دما بالا مانند BSCCO-2223 تقسيم مي‌كنند. از اوايل دهه 1970 تحقيقات بر روي ژنراتورهاي ابررسانا با استفاده از هاديهاي دما پايين آغاز شد. در اين دهه كمپاني وستينگهاوس تحقيقات براي ساخت يك نمونه دوقطبي را با استفاده هاديهاي دماپايين آغاز كرد. نتيجه اين پروژه ساخت و تست يك ژنراتور MVA5 در سال 1972 بود.
در سال 1970 كمپاني جنرال الكتريك ساخت يك ژنراتور ابررسانا را با استفاده از هادي‌هاي دماپايين، با هدف نصب در شبكه آغاز كرد.
ساخت و تست اين ژنراتور MVA20، دو قطب و rpm3600 در سال 1979 به پايان رسيد. در اين ماشين از روش طراحي هسته هوايي بهره‌ گرفته شده بود و سيم‌پيچ ميدان آن توسط هليم مايع خنك مي‌شد. اين ژنراتور، بزرگترين ژنراتور ابررساناي تست شده تا آن زمان (1979) بود.
در سال 1979 وستينگهاوس و اپري ساخت يك ژنراتور ابررساناي MVA300 را آغاز كردند. اين پروژه در سال 1983 به علت شرايط بازار جهاني با توافق طرفين لغو شد.
در همين زمينه كمپاني زيمنس ساخت ژنراتورهاي دماپايين را در اوايل دهه 1970 شروع كرد. در اين مدت يك نمونه رتور و يك نمونه استاتور با هسته آهني براي ژنراتور MVA 850 با سرعت rpm3000 ساخته شد، اما به دليل مشكلاتي تست عملكرد واقعي آن انجام نشد.
در اين دهه آلستوم نيز طراحي يك رتور ابررسانا براي يك توربو ژنراتور سنكرون را آغاز كرد. اين رتور در يك ماشين MW250 به كار رفت.
با توجه به اهميت خنك‌سازي در كاركرد مناسب ژنراتورهاي ابررسانا، همگام با توسعه اين صنعت، طرحهاي خنك‌سازي جديدي ارايه شد. در 1977 اقاي لاسكاريس يك سيستم خنك‌سازي دوفاز (مايع- گاز) براي ژنراتورهاي ابررسانا ارايه كرد. در اين طرح بخشي از سيم‌پيچ در هليم مايع قرار مي‌گرفت و با جوشش هليم دردماي 2/4 كلوين خنك مي‌شد. جداسازي مايع ازگاز توسط نيروي گريز از مركز ناشي از چرخش رتور صورت مي‌گرفت.
جمع‌بندي تحولات دهه 1970

با بررسي مقالات IEEE اين دهه (28 مقاله) در موضوعات مختلف مرتبط با ژنراتور سنكرون به نتايج زير مي‌رسيم:
1-شايان ذكر است بررسي كل مقالات در دهه‌هاي مختلف نشان مي‌دهد كه زمينه‌هاي اصلي مورد توجه طرحهاي بدون جاروبك، سيستمهاي خنك‌سازي، سيستمهاي تحريك، روشهاي عددي، سيستم عايقي، ملاحظات مكانيكي، ژنراتور آهنرباي دائم، پاورفرمر و ژنراتورهاي ابررسانا بوده‌اند. تمركز اكثر تحقيقات بر روي كاربرد مواد ابررسانا در ژنراتورها بوده است.
2-استفاده از روشهاي كامپيوتري براي تحليل و طراحي ماشينهاي الكتريكي آغاز شد.
3-حلالها از سيستمهاي عايق كاري حذف شدند و تكنولوژي رزين ريچ بدون حلال ارايه شد.
تحولات دهه 1980

در اين دهه نيز همچون دهه‌هاي گذشته سيستم‌هاي عايقي از زمينه‌هاي مهم تحقيقاتي بوده است. در اين دهه آلستوم يك فرمول جديد اپوكسي بدون حلال كلاس F در تركيب با گلاس فابريك و نوع خاصي از كاغذ ميكا با نام تجاري دورتناكس را ارايه داد. اين سيستم عايق كاري داراي استحكام مكانيكي بيشتر، استقامت عايقي بالاتر، تلفات دي‌الكتريك پايينتر و مقاومت حرارتي كمتري نسبت به نمونه‌‌هاي قبلي بود.
در ادامه كار بر روي پروژه‌هاي ابررسانا، در سال 1988 سازمان توسعه تكنولوژي صنعتي و انرژيهاي نو ژاپن پروژه ملي 12 ساله سوپر جي‌ام را آغاز كرد كه نتيجه آن در دهه‌هاي بعدي به ثمر رسيد.
سيستم‌هاي خنك‌سازي ژنراتورهاي ابررسانا هنوز در حال پيشرفت بودند. در اين زمينه مي‌توان به ارايه طرح سيستم خنك‌سازي تحت فشار توسط انستيتو جايري ژاپن اشاره كرد. اين طرح كه در سال 1985 ارايه شد داراي يك مبدل حرارتي پيشرفته و يك مايع‌ساز هليم با ظرفيت 350 ليتر بر ثانيه بود.
در اين مقطع شاهد تحقيقاتي در زمينه مواد آهن‌رباي دائم بوديم. استفاده از آهنرباهاي نئوديميوم – آهن- بورون در اين دهه تحول عظيمي در ساخت ماشينهاي آهنرباي دائم ايجاد كرد. مهمترين خصوصيت آهنرباهاي نئوديميوم- آهن- بورون انرژي مغناطيسي (BHmax) بالاي آنهاست كه سبب مي شود قيمت هر واحد انرژي مغناطيسي كاهش يابد. علاوه بر اين، انرژي زياد توليدي امكان به كارگيري آهنرباهاي كوچكتر را نيز فراهم مي‌كند، بنابراين اندازه ساير اجزا ماشين از قبيل قطعات آهن و سيم‌پيچي نيز كاهش مي‌يابد و در نتيجه ممكن است هزينه كل كمتر شود. شايان ذكر است حجم بالايي از تحقيقات انجام شده اين دهه در زمينه ژنراتورهاي بدون جاروبك و خودتحريكه براي كاربردهاي خاص بوده كه به علت عموميت نيافتن در صنعت ژنراتورهاي نيروگاهي از شرح آنها صرفنظر مي شود.
جمع‌بندي تحولات دهه 1980

با بررسي مقالات IEEE اين دهه (41 مقاله) در موضعات مختلف مرتبط با ژنراتور سنكرون به نتايج زير مي‌رسيم:
1-تمركز موضوعي مقالات در شكل نشان داده شده است.
2- روشهاي قبلي عايق كاري به منظور كاهش مقاومت حرارتي عايق بهبود يافت.
3- مطالعات وسيعي روي ژنراتورهاي سنكرون بدون جاروبك بدون تحريك صورت گرفت.
4-فعاليت روي پروژه‌هاي ژنراتورهاي ابررساناي آغاز شده در دهه قبل ادامه يافت.
5-سيستمهاي خنك‌سازي جديدي براي ژنراتورهاي ابررسانا ارايه شد.
6-روش اجزاي محدود در طراحي و تحليل ژنراتورهاي سنكرون خصوصاً ژنراتورهاي آهنرباي دائم به شكل گسترده‌اي مورد استفاده قرار گرفت.
از ابتداي دهه 1990 تاكنون

هدف از انجام اين تحقيق بررسي سير تحقيقات انجام شده با موضوع طراحي ژنراتور سنكرون است. به اين منظور، بررسي مقالات منتشر شده در IEEE كه با اين موضوع مرتبط بودند، در دستور كار قرار گرفت. به عنوان اولين قدم كليه مقالات مرتبط در دهه‌هاي مختلف جستجو و بر مبناي آنها يك تقسيم‌بندي موضوعي انجام شد. سپس سعي شد بدون پرداختن به جزييات، سير تحولات استخراج شود. رويكرد كلي اين بوده كه تحولات داراي كاربرد صنعتي بررسي شوند.
با توجه به گستردگي موضوع و حجم مطالب اين گزارش در دو بخش ارايه شده است. در بخش اول پيشرفتهاي ژنراتورهاي سنكرون از آغاز تا انتهاي دهه 1980 بررسي شد. در اين بخش تحولات اين صنعت از ابتداي دهه 1990 تاكنون مورد توجه قرار گرفته است. در پايان هر دهه يك جمعبندي از كل فعاليتهاي صورت گرفته ارايه و سعي شده است ارتباط منطقي بين پيشرفتهاي هر دهه با دهه‌هاي قبل و بعد بيان شود.
در پايان گزارش با توجه به تحقيقات انجام شده و در حال انجام، تلاش شده نمايي از پيشرفتهاي عمده مورد انتظار در سالهاي آينده ترسيم شود.
تحولات دهه 1990

در اين دهه نيز همچون دهه‌هاي گذشته تلاشهاي زيادي در جهت بهبود سيستمهاي عايقي صورت گرفت. در اين ميان مي‌توان به ارايه سيستمهاي عايق ميكاپال كه توسط كمپاني جنرال الكتريك از تركيب انواع آلكيدها و اپوكسيها در سال 1990 بدست آمده بود، اشاره كرد. درسال 1992 شركت وستينگهاوس الكتريك يك سيستم جديد عايق سيم‌پيچ رتور كلاس F را ارايه كرد. اين سيستم شامل يك لايه اپوكسي ‌گلاس بود كه با چسب پلي‌آميد- اپوكسي روي هادي مسي چسبانده مي‌شد. مقاومت در برابر خراشيدگي، استرسهاي الكتريكي و مكانيكي و كاهش زوال حرارتي از مزاياي اين سيستم بود. گروه صنعتي ماشينهاي الكتريكي و توربين نانجينگ عايق سيم‌پيچ رتور جديدي از جنس نومكس اشباع شده با وارنيش چسبي را در سال 1998 ارايه كرد. از مهمترين مزاياي اين سيستم مي‌توان به انعطاف‌پذيري و استقامت عايقي، بهبود اشباع شوندگي با وارنيش، تميزكاري آسان و عدم جذب رطوبت اشاره كرد. در اواخر دهه 1990 تلاشهايي براي افزايش هدايت گرمايي عايقها صورت گرفت. آقاي ميلر از شركت زيمنس- وستينگهاوس روشي را ارايه كرد كه در آن لايه پركننده مورد استفاده در طرحهاي قبلي به وسيله رزينهاي مخصوصي جايگزين مي‌شد. مزيت اصلي اين روش پرشدن فاصله هوايي بين لايه پركننده و ديواره استاتور بود كه موجب مي‌شد هدايت گرمايي عايق استاتور به طرز چشمگيري افزايش پيدا كند.
دراين دهه مسائل مكانيكي در عملكرد ماشينهاي سنكرون بيشتر مورد توجه قرار گرفت. در سال 1993 آقاي جانگ از دانشگاه بركلي روشي براي كاهش لرزش در ژنراتورهاي آهنرباي دائم ارايه كرد. لرزش در ژنراتورهاي آهنرباي دائم در اثر نيروهاي جذبي اعمال شده توسط آهنرباهاي دائم گردان به استاتور است. در اين روش لرزشها با استفاده از سنسورهاي ماكسول، روش اجزاء محدود و بسط فوريه مورد بررسي قرار مي‌گرفت و نهايتاً براي كاهش لرزشها، ابعاد هندسي جديدي براي آهنرباها ارايه مي‌شد البته با اين شرط كه كارايي ماشين افت نكند.
همزمان با پيشرفتهاي مذكور، افزايش سرعت و حافظه كامپيوترها و ظهور نرم‌افزارهاي قدرتمند موجب شد تا راه براي استفاده از كامپيوترها در تحليل و طراحي ژنراتورهاي سنكرون بيش از پيش باز شود. در سال 1995 آقاي كوان روشي براي طراحي سيستمهاي خنك‌سازي با هيدروژن ارايه كرد كه بر مبناي محاسبات كامپيوتري ديناميك شاره پايه‌ريزي شده بود. دراين روش بااستفاده از يك مدل معادل سيستم خنك‌سازي، توزيع دما در بخشهاي مختلف ژنراتور پيش‌بيني مي‌شد.
نحوه پياده‌سازي سيستمهاي خنك‌سازي نيز از جمله موضوعاتي بود كه مورد توجه قرار گرفت. در سال 1995 اقاي آيدير تاثير مكان حفره‌هاي تهويه برميدان مغناطيسي ژنراتور سنكرون را با استفاده از روش اجزاء محدود مورد بررسي قرار داد و نشان داد كه انتخاب مكان مناسب حفره‌هاي تهويه جهت جلوگيري از افزايش جريان مغناطيس‌كنندگي و پديده اشباع بسيار حائز اهميت است. مكان حفره‌ها تاثير قابل توجهي بر شار يوغ دارد.
از مهمترين تحولاتي كه در اين دهه در زمينه ژنراتورهاي ابررسانا صورت گرفت مي‌توان به نتايج پروژه سوپرجي‌ام كه از دهه قبل در ژاپن آغاز شده بود، اشاره كرد. حاصل اين پروژه ساخت و تست سه مدل رتور ابررسانا براي يك استاتور بود. مدل اول كه در تركيب با استاتور، خروجي MW79 را مي‌داد در سال 1997 و مدل دوم در سال 1998 با خروجي MW7/79 تست شد. نهايتاً مدل سوم كه داراي يك سيستم تحريك پاسخ سريع بود در سال 1999 تست و در شبكه قدرت نصب شد.
با بكارگيري مواد ابررساناي دمابالا در اين دهه، تكنولوژي ژنراتورهاي سنكرون ابررسانا وارد مرحله جديدي شد. كمپاني جنرال الكتريك طراحي، ساخت و تست يك سيم‌پيچ دمابالا را در اواسط اين دهه به پايان رساند. در ادامه، همكاري وستينگهاوس و شركت ابررساناي آمريكا به طراحي يك ژنراتور ابررساناي دما‌بالاي 4 قطب، rpm1800، Hz60 انجاميد.
اين دهه شاهد پيشرفتهاي مهمي در زمينه سيستمهاي تحريك مانند ظهور سيستمهاي تحريك استاتيك الكترونيكي بود. استفاده از اينگونه سيستمها باعث انعطاف‌پذيري در طراحي سيستمهاي تحريك و جذب مشكلات نگهداري جاروبك در اكسايترهاي گردان مي‌شد. يكي از اولين نمونه‌هاي اين سيستمها در سال 1997 توسط آقاي شافر از كمپاني باسلر الكتريك آلمان ارايه شد.
در اين مقطع زماني كاربرد سيستمهاي ديجيتال در تحريك ژنراتورها آغاز شد. يكي از اولين نمونه‌هاي سيستم تحريك ديجيتالي، سيستمي بود كه در سال 1999 توسط آقاي ارسگ از دانشگاه زاگرب كرواسي ارايه شد.
در ادامه تلاشهاي صورت گرفته براي بهبود خنك‌سازي، شركت زيمنس- وستينگهاوس طرح يك ژنراتور بزرگ با خنك‌سازي هوايي را در سال 1999 ارايه داد. ارايه اين طرح آغازي بر تغيير طرحهاي خنك‌سازي از هيدروژني به هوايي بود. استفاده از عايقهاي استاتور نازك دمابالا و كاربرد محاسبات كامپيوتري ديناميك شاره موجب اقتصادي شدن اين طرح نسبت به خنك‌سازي هيدروژني شد.
پايان دهه 90 مصادف با ظهور تكنولوژي پاورفرمر بود. در اوايل بهار سال 1998 دكتر ليجون از كمپاني ABB سوئد، ايده توليد انرژي الكتريكي در ولتاژهاي بالا را ارايه كرد. مهمترين ويژگي اين طرح استفاده از كابلهاي فشار قوي پلي‌اتيلن متقاطع معمول در سيستمهاي انتقال و توزيع در سيم‌پيچي استاتور است.
در اين طرح به علت سطح ولتاژ بسيار بالا از كابلهاي استوانه‌اي به منظور حذف تخليه جزيي و كرونا استفاده مي‌شود.
در سال 1998 اولين نمونه پاورفرمر در نيروگاه پرجوس واقع در شمال سوئد نصب شد. اين پاورفرمر داراي ولتاژ نامي KV45، توان نامي MVA11 و سرعت نامي rpm600 بود.
يكي از مسائل مهم مطرح در پاورفرمر فيكس شدن دقيق كابلها در شيارها به منظور جلوگيري از تخريب لايه بيروني نيمه هادي كابل در اثر لرزشها است. به اين منظور كابلها را با استفاده از قطعات مثلثي سيليكون – رابر فيكس مي‌كنند.
به علت پايين بودن جريان سيم‌پيچ استاتور پاورفرمر تلفات مسي ناچيز است، لذا استفاده از يك مدار خنك‌سازي آبي كافي است. سيستم خنك‌سازي دماي عملكرد كابلها را در حدود 70 درجه سانيگراد نگه مي‌دارد، در حالي كه طراحي عايقي كابلها براي دماي نامي 90 درجه انجام شده است. لذا مي‌توان پاورفرمر را بدون مشكل خاصي زير اضافه بار برد.
جمع بندي تحولات دهه 1990

با بررسي مقالات IEEE اين دهه (157 مقاله) در موضوعات مختلف مرتبط با ژنراتور سنكرون به نتايج زير مي‌رسيم:
1-تمركز موضوعي مقالات
2-فعاليت روي ژنراتورهاي ابررساناي دمابالا آغاز شد.
3-كاربرد سيستمهاي تحريك استاتيك و ديجيتال گسترش يافت.
4-روشهاي كاهش لرزش حين عملكرد ژنراتور مورد توجه قرار گرفت.
5-در اوايل دهه رويكرد طراحان بهبود عملكرد سيستمهاي خنك‌سازي هيدروژني بود، اما در اواخر دهه سيستمهاي خنك‌سازي با هوا به دلايل زير مجدداً مورد توجه قرار گرفتند:
الف) توليد عايقهاي استاتور نازكتر با مقاومت حرارتي پايينتر
ب) ظهور روشهاي محاسبات كامپيوتري ديناميك شاره
ج) ارزاني و سادگي ساخت سيستمهاي خنك‌سازي با هوا
6-تكنولوژي پاورفرمر ابداع شد.
7- رويكرد طراحان از افزايش ظرفيت ژنراتورها به سمت ارايه طرحهاي برنده- برنده يعني كيفيت و هزينه مورد قبول براي مشتري و توليد‌كننده تغيير كرد.
تحولات 2000 به بعد

همچون دهه‌هاي پيش، روند روزافزون استفاده از روشهاي عددي خصوصاً‌روش اجزاء محدود ادامه يافت. آقاي زوليانگ يك روش اجزاء محدود جديد را با بهره‌گيري از عناصر قوسي شكل در مختصات استوانه‌اي ارايه كرد. مزاياي اين روش دقت زياد و فرمولبندي ساده بود. اين روش براي تحليل ميدان درشكلهاي استوانه‌اي مانند ماشينهاي الكتريكي بسيار مناسب است.
در سال 2004 آقاي شولت روش نويني براي طراحي ماشينهاي الكتريكي ارايه داد كه تركيبي از روش اجزاء محدود و روشهاي تحليلي بود. از روش تحليلي براي طراحي اوليه بر مبناي گشتاور، جريان و سرعت نامي و از روش اجزاء محدود براي تحليل دقيق ميدانها به منظور تكامل طرح اوليه استفاده مي‌شد. به اين ترتيب زمان و هزينه مورد نياز طراحي كاهش مي‌يافت.
در زمينه عايق تلاشها جهت بهبود هدايت گرمايي در سال 2001 به ارايه يك سيستم با هدايت گرمايي بالا توسط كمپانيهاي توشيبا و ونرول ايزولا انجاميد. اثر بهبود هدايت گرمايي دراين سيستم نسبت به سيستم معمول مشهود است.
در زمينه ژنراتورهاي ابررسانا مي‌توان به تحولات زير اشاره كرد. در سال 2002 كمپاني جنرال‌الكتريك برنامه‌اي را با هدف ساخت و تست يك ژنراتور MVA100 آغاز كرده است. هسته رتور و استاتور اين ژنراتور مانند ژنراتورهاي معمولي است. هدف اين است كه يك رتور معمولي بتواند ميدان حاصل از سيم‌پيچي ابررسانا را بدون اشباع شدن از خودعبور دهد. مهمترين قسمتهاي اين پروژه، سيم‌پيچ ميدان دمابالا و سيستم خنك‌سازي است
از سال 2000 به بعد فعاليتهاي گسترده‌اي در جهت ساخت و نصب پاورفرمرها صورت گرفته است كه نتيجه آن نصب چندين پاورفرمر در نيروگاههاي مختلف است. اين پاورفرمها و مشخصات آنها عبارتند از:
• پاورفرمر نيروگاه توربو ژنراتوري اسكيلزتونا سوئد با مشخصات KV136، MVA42، rpm3000
• پاورفرمر نيروگاه هيدرو ژنراتوري پرسي سوئد با مشخصات kv155، MVA75، rpm125
• پاورفرمر نيروگاه هيدروژنراتوري هلجبرو سوئد با مشخصات KV78، MVA25، rpm4/115
• پاورفرمر نيروگاه هيدرو ژنراتوري ميلرگريك كانادا با مشخصات KV25، MVA8/32، rpm720
• پاورفرمر نيروگاه هيدروژنراتوري كاتسورازاوا با مشخصات KV66، MVA9، rpm5/428
جمع بندي تحولات 2000 به بعد

با بررسي مقالات IEEE اين سالها (149 مقاله) در موضوعات مختلف مرتبط با ژنراتور سنكرون به نتايج زير مي‌رسيم:
1-تمركز موضوعي مقالات
2-تلاشهاي زيادي براي بهبود هدايت حرارتي عايق سيم‌پيچي استاتور خنك شونده با هوا با هدف رسيدن به ظرفيتهاي بالاتر صورت گرفت.
3-پاورفرمرها در نيروگاههاي مختلف نصب شدند.
4-فعاليت روي پروژه‌هاي ژنراتورهاي ابررساناي دمابالا آغاز شده در دهه قبل ادامه يافت.
5-كاربرد سيستمهاي تحريك ديجيتال به خصوص سيستمهاي با چند ريزپردازنده گسترش يافت.
6-استفاده از روشهاي عددي در طراحي و آناليز ژنراتورهاي سنكرون به ويژه سيستمهاي خنك‌سازي بسيار گسترش يافت.
نتيجتا ژنراتورهاي سنكرون همواره حجم عمده‌اي از تحقيقات را در دهه‌هاي مختلف به خود اختصاص داده‌اند، تا جايي كه بعد از گذشت بيش از 100 سال از ارايه اولين نوع ژنراتور سنكرون همچنان شاهد ظهور تكنولوژيهاي جديد دراين عرصه هستيم. تكنولوژيهاي كليدي كماكان مسائل عايق كاري و خنك‌سازي هستند.
تكنولوژي پيشرفته توليد ژنراتور و ريسك بالقوه موجود باعث شده است تعداد سازندگان مستقل ژنراتور كاهش يابد.
متاسفانه، علي‌رغم اينكه بالا بردن نقطه زانويي اشباع مواد مغناطيسي مي‌تواند تاثير به سزايي در پيشرفت ژنراتورها داشته باشد، تاكنون دستاورد مهمي در اين زمينه حاصل نشده است. البته تلاشهايي در گذشته براي كاهش تلفات الكتريكي لايه‌هاي هسته صورت گرفته است، اما پيشرفتهاي حاصله منوط به كاهش ضخامت لايه‌ها يا افزايش غيرقابل قبول قيمت آنهاست. متاسفانه پيشرفت مهمي نيز در آينده پيش‌بيني نمي‌شود.
نياز امروزه بازار ژنراتورهايي است كه به نحوي پكيج شده باشند كه به راحتي در سايت قابل نصب باشند. پكيجهايي كه از يكپارچگي بالايي برخوردارند به طوري كه نويز حاصل از عملكرد ژنراتور را در خود نگاه مي‌دارند، در برابر شرايط جوي مقاومند، ترانسفورماتور جريان و ترانسفورماتور ولتاژ دارند، نقطه نوترال در آنهاتعبيه شده و حفاظت اضافه ولتاژ دارند. همچنين سيستم تحريك نيز در اين پكيجها تعبيه شده است و تقريباً بي‌نياز از نگهداري هستند.
پيش‌بيني مي‌شود روند جايگزيني سيستمهاي خنك‌سازي هيدروژني به وسيله سيستمهاي خنك سازي با هوا ادامه يابد و اين در حالي است كه بهبود بازده سيستمهاي خنك‌سازي هيدروژني همچنان مورد توجه است.
با توجه به حجم گسترده تحقيقات در حال انجام روي ژنراتورهاي ابررساناي دمابالا، توليد گسترده اينگونه ژنراتورها در آينده نزديك قابل پيش‌بيني است. پيشرفتهاي مورد نياز در اين زمينه به شرح زير است:
• توليد هاديهاي رشته‌اي و استفاده از آنها به جاي نوارهاي دمابالاي امروزي جهت افزايش چگالي جريان
• افزايش قابليت خم كردن سيمهاي دمابالا به منظور ايجاد شكل سه‌بعدي مناسب سيم‌پيچي رتور درنواحي انتهايي سيم‌پيچ
• استفاده از سيم‌پيچي لايه‌‌اي به جاي سيم‌پيچي‌هاي پنكيك به منظور حداقل سازي اتصالات بين كويلها
از موضوعات قابل توجه ديگري كه پيش‌بيني مي‌شود صنعت ژنراتور را در سالهاي آينده تحت تاثير قراردهد، توليد انبوه پاورفرمر و رسيدن به سطوح بالاتر ولتاژ است به طوريكه در آينده نزديك پاور فرمرهايي با ولتاژ KV170 براي نيروگاههاي توربو ژنراتوري و KV200 براي نيروگاههاي هيدروژنراتوري ساخته خواهند شد و اميد است كه سطح ولتاژ خروجي آنها به KV400 هم برسد.
انتظار مي‌رود پيشرفت سيستمهاي عايقي ادامه يابد. ممكن است از تكنولوژيهاي جديد عايقي مانند سيستمهاي عايق پليمري پيشرفته استفاده شود و اين سيستمها بتوانند با نوارهاي ميكا-گلاس امروزي رقابت كنند. اين پيشرفتها مي‌تواند به بهبود كابلهاي پاور فرمر نيز بينجامد.

ریپورتر
29th March 2010, 10:51 AM
سیستم سنکرون و سنکروچک
سنکرون کردن و شرایط آن

تعریف سنکرون کردن : وصل دو شبکه کاملاً مجزا به طریقی که هیچ نوع شدت جریان ضربه ای قابل ملاحظه ای ایجاد نشود .
شرایط سنکرون کردن :

1. برابری ولتاژها : توسط تغییر شدت جریان تحریک ژنراتورها در نیروگاهها و استفاده از جبران کننده ها در پست ها صورت می گیرد .
2. برابری فرکانس ها : توسط تنظیم محرک اولیه ژنراتورها صورت می گیرد .
3. برابری فاز اختلاف سطح ها (هم فاز بودن) : برای هر سیستمی که برای اولین بار وارد مدار می شود ، قبل از وارد مدار شدن توسط گروه تعمیرات تست می گردد . این ترتیب تا زمانی که تغییرات اساسی روی شبکه انجام نشود ، برقرار است .
4. برابری حوزۀ دوار : ترتیب صحیح فازها را می توان توسط سه عدد لامپ کنترل نمود . این لامپ ها مابین فازهای هم نام که باید به هم متصل شوند ، بسته می شوند . اگر در این حالت (قبل از پارالل) ترتیب فازها صحیح باشد ، لامپ ها با هم خاموش و با هم روشن می شوند ولی اگر ترتیب فازها غلط باشد ، لامپ ها یکی پس از دیگری خاموش و روشن می شوند .
سنکرون کردن دو شبکه به دو صورت انجام می گیرد :

سنکرون کردن به طریقه اتوماتیک

در این حالت اپراتور مسئول ، دکمۀ اتوماتیک سنکرون را فشار داده و منتظر می ماند . سیستم اتوماتیک سنکرون وارد مدار شده و به طور خودکار فرکانس ها و ولتاژها را مساوی می نماید و در شرایطی که دو سیستم هم فاز شدند ، دژنکتور به طور اتوماتیک وصل می گردد . اگر نیاز باشد عمل پارالل در پست ها انجام گیرد ، لازم است همزمان با مرکز دیسپاچینگ ملی تماس وجود داشته باشد تا با تغییراتی که در تولید مناطق مختلف انجام می گیرد ، فرکانس دو شبکه برابر گردد .
سیستم اتوماتیک سنکرون معمولاً بین 5 تا 10 دقیقه در مدار می ماند . اگر در این مدت شرایط سنکرون آماده گردید ، دو شبکه با هم پارالل می گردند . در غیر این صورت این سیستم از مدار خارج می گردد .
سنکرون کردن به طریقه دستی

پس از مساویکردن ولتاژها و فرکانس های دو شبکه با توجه به حرکت عقربه دستگاه سنکرونسکوپ ، زمانی که عقربه روی نقطه صفر رسید ، دو شبکه با هم فاز می باشند . در آن لحظه می توان اقدام به وصل دژنکتور نمود .
سنکروچک

تبدیل یک شبکه خطی به یک شبکه رینگ با وصل یک دژنکتور را سنکروچک گویند . زمانی که در شبکه سراسری حادثه ای باعث قطع یک یا چند خط انتقال نیرو شود ، شبکه سراسری از حالت رینگ خارج شده و به شبکه خطی تبدیل می گردد . چون فرکانس در این شبکه تغییر نمی کند این شبکه سنکرون می باشد ولی به خاطر اطمینان ، زمانی که کلید سنکرون روشن می شود ، اطلاعات روی تابلوی سنکرون بایستی چک شود .
اولاً عقربه دستگاه سنکرونسکوپ در نقطه ای ثابت باشد . ثانیاً زاویه ای که با نقطه صفر سنکرونسکوپ می سازد ، بیشتر از 15± درجه نباشد . این زاویه را زاویه بار (LOAD ANGLE) می گویند . این زاویه بر اثر اختلاف ولتاژ ارسالی روی شبکه و ولتاژ دریافتی بوجود می آید .
عمل سنکروچک نیز به دو صورت انجام می گیرد :
به طور خودکار

با فشار دادن دکمه خودکار ، سیستم سنکروچک وارد مدار می شود . در صورتی که زاویه بار کمتر از 15± درجه نسبت به نقطه صفر باشد ، بلافاصله دژنکتور وصل شبکه به حالت رینگ در می آید . در غیر این صورت پس از جند دقیقه بدون اینکه دژنکتور وصل شود ، سنکروچک از مدار خارجمی گردد.
به طریق دستی

جهت سنکروچک نمودن دستی شبکه دستگاه سنکرونسکوپ را وارد مدار می نماییم و به عقربه آن توجه می کنیم . چنانچه زاویه بار بیشتر از 15± درجه نباشد ، می توانیم دژنکتور مربوطه را وصل نماییم . در صورتی که زاویه بار از 15± درجه بیشتر باشد ، مجاز به وصل دژنکتور نمی باشیم تا اینکه اقداماتی جهت کم کردن زاویه بار توسط دیسپاچینگ ملی انجام پذیرد آنگاه پس از کاهش زاویه بار می توانیم دژنکتور مربوطه را وصل نمایم .
ژنراتورهای اشعه ایکس(X-ray Generator)

انرژی فوتون های اشعه ایکس تولید شده تابع 1- انرژی جنبشی الکترون ها، 2- اختلاف پتانسیل دو سر تیوپ است. ابتدا ولتاژی حدود kv 150 – 40 به دو قطب تیوپ اشعه ایکس اعمال می شود. الکترون هایی که توسط فیلامان تولید شده اند دراین اختلاف پتانسیل به سمت قطب آند شتاب می گیرند و پس از برخورد به هدف به فوتون هایx – ray تبدیل می شوند. اختلاف پتانسیل در سر تیوپ، موجب افزایش انرژی جنبشی الکترون ها و تولید فوتون های پر انرژی تر می گردد. هر چه ضخامت عضو بیشتر باشد، فوتون های پر انرژی تری لازم است. برای به راه اندازی تیوپ و در تولید اشعه ایکس، از ژنراتور استفاده می شود.
- وظایف ژنراتور:

1-تأمین اختلاف پتانسیل دو سر تیوپ اشعه ایکس.
2-ملتهب کردن فیلامان برای تولید الکترون.
3-کنترل اختلاف پتانسیل دو سر تیوپ.
ولتاژ مورد استفاده در ژنراتورهای اشعه ایکس از نوع ولتاژ متناوب است.
دو نوع ولتاژ متناوب داریم: 1- تکفاز و 2- سه فاز.
- نحوة تولید برق تکفاز:
مبنای کار، قانون القای الکترومغناطیسی است. در نتیجه گردش یک سیم پیچ درون میدان مغناطیسی ثابت با القای ولتاژ در سیم پیچ لازم است.
- نحوه تولید برق سه فاز:
در مولدهای سه فاز، سه سیم پیچ به طور همزمان درون میدان مغناطیسی می چرخند. هر سیم پیچ با اختلاف زاویه ˚120 نسبت به بقیه قرارگرفته است. به علت متفاوت بودن موقعیت سیم پیچ ها، مقدار ولتاژ تولیدی در هر سیم پیچ در یک زمان مشخص متفاوت است.
• ترانسفورماتورها:

وسیله افزایش یا کاهش ولتاژ نسبت به مقدار مبنا هستند و بر دو نوعند:
- ترانسفورماتور افزاینده (step up Transformer).
- ترانسفورماتور کاهنده (step down Transformer).
- اجزای ترانسفورماتور:

1-هسته فلزی.
2-دو سری سیم پیچ که بر روی هسته فلزی پیچیده می شوند.
سیم پیچ متصل به ولتاژ ورودی سیم پیچ اولیه و سیم پیچی که ولتاژ تغییریافته از آن خارج شده سیم پیچ ثانویه نام دارد. سیم پیچ ها نسبت به هم عایق بندی شده است. تشکیل میدان مغناطیسی موجب القای مجدد جریان در سیم پیچ های ثانویه و هسته فلزی می شود. برای آنکه در سیم پیچ ثانویه جریانی القا شود، بایستی ولتاژ ورودی متناوب(AC) باشد. ولتاژ متناوب، ‌میدان مغناطیسی متناوبی را در هسته ایجادکرده و شار در واحد زمان تغییرمی کند. بر مبنای قانون القای فارادی،‌ تغییر در شار مغناطیسی موجب القاء جریان جدید در سیم پیچ ثانویه می گردد.
قرقره ترانسفورماتور

براي حفاظ و نگهداري از سيم پيچ‌هاي ترانسفورماتور خصوصا در ترانسفورماتورهاي كوچك بايد از قرقره استفاده نمود. جنس قرقره بايد از مواد عايق باشد قرقره معمولا از كاغذ عايق سخت ، فيبرهاي استخواني يا مواد ترموپلاستيك مي سازند. قرقره هايي كه از جنس ترموپلاستيك هستند معمولا يك تكه ساخته مي شوند ولي براي ساختن قرقره هاي ديگر آنها را در چند قطعه ساخت و سپس بر روي همدگر سوار كرد. بر روي ديواره هاي قرقره بايد سوراخ يا شكافي ايجاد كرد تا سر سيم پيچ از آنها خارج شوند. اندازه قرقره بايد با اندازه ى ورقه‌هاي ترانسفورماتور متناسب باشد و سيم پيچ نيز طوري بر روي آن پيچيده شود. كه از لبه هاي قرقره مقداري پايين تر قرار گيرد تا هنگام جا زدن ورقه‌هاي ترانسفورماتور ، لايه ى رويي سيم پيچ صدمه نبيند. اندازه قرقره هاي ترانسفورماتورها نيز استاندارد شده است اما در تمام موارد ، با توجه به نياز ، قرقره مناسب را مي توان طراحي كرد. - نکات قابل توجه قبل از حمل ترانسهای قدرتپس از پایان مراحل ساخت و انجام موفقیت آمیز آزمایشات کارخانه ای یا جابه جائی ترانسفورماتور نصب شده، از محلی به محل دیگر و قبل از بارگیری می بایست اقدامات زیر بروی ترانسفورماتور انجام گیرد. لازم به ذکر است که به منظور کاهش ابعاد و وزن ترانسفور ماتور و نیز از نظر فنی و محدودیّت ترافیکی می بایستی تجهیزات جنبی ترانسفورماتور(کنسرواتور، بوشینگ و...) باز و به طور جداگانه بسته بندی و آماده حمل گردند. اما خود ترانسفورماتور به طریق زیر حمل می گردد.
الف_حمل با روغن:
ترانسفورماتورهای کوچک و ترانسفورماتورهایکه وزن و ابعاد آنها مشکلاتی را از نظر حمل ایجاد نمی نمایند، معمولا با روغن حمل می گردند.در این حال سطح روغن بایستی حدودا 15 سانتی متر پایین تر از درپوش اصلی(سقف) ترانسفورماتور قرار دشته باشد.
توجه:
1-فاصله 15 سانتیمتر فوق الذکر در مورد کلیه ترانسفورماتورها یکسان نبود.و توصیه می شود به دستور العمل کارخانه سازنده مراجعه شود.
2-لازم به ذکر است که در هنگام حمل روغن، قسمت آمتیوپارت ترانسفورماتوری بایستی کاملا در داخل روغن قرار گیرد.
3-به منظور جلوگیری از نفوذ رطوبت و هوا به داخل ترانسفورماتورفضای بین روغن و سقف ترانسفورماتور با هوای خشک و یا گاز نیتروژن با فشار حدود 2/0 بار در هوای 20c پر می کنند. لازم به ذکر است که گاز نیتروژن بایستی کاملا خشک باشد
4-در این حالت با نصب یک محفظه سیلیکاژل بسته (آب بندی شده) بر روی ترانسفورماتور به منظور جذب رطوبت استفاده می شود ضمنا جهت جلوگیری از پاشیدن روغن به داخل سیلیکاژل در طول حمل از یک وسیله حفاظتی استفاده می شود.
ب_ حمل بدون روغن :
ترانسفورماتور های بزرگ بدون روغن حمل می گردند. در این موارد پس از تخلیه روغن، ترانسفورماتور را با هوای خشک و یا با نیتروژن پر می کنند.لازم به ذکر است که در این حالت نیز در طول حمل بایستی فشار هوا یا نیتروژن به طور مرتب کنترل گردند.
نکات قابل توجه و مهم در نصب و قبل از راه اندازی

1-کنترل ضربه نگار
2-کنترل فشار هوا
3-کنترل نقطه شبنم و اکسیژن
4-کنترل استقرار ترانسفورماتور بر روی فوندانسیون
5-کنترل تجهیزات جنبی ترانسفورماتور شامل بوشینگ-سیستم خنک کننده-رادیاتور-فن-پمپ-کنسرواتور-ملحقات کنسرواتور
6-سیستم تنفسی
7-شیراطمینان
8-ترمومترها شامل ترمومتر روغن-کالیبوه کردن ترمومتر-ترمومتر سیم پیچ
9-تپ خپجر
10- رله بو خهلتسروغن ترانسفورماتورروغن های ترانسفورماتور عمدتا ترکیبات پیچیده ای از هیدروکربنهای مشتق از نفت خام می باشند و به جهت دارا بودن خواص مناسب، روغنهای پایه نفتینک ترانسفورماتور مناسب تر تشخیص داده شدهاند.
خواص مورد نیاز برای روغن های ترانسفورماتور به طور خلاصه عبارتند از:عایق کاری الکتریکی-انتقال حرارت-قابلیت خاموش کردن قوس الکتریکی-پایداری شیمیایی-سیل کردن ترانسفورماتور و حمل مواد آلوده ناشی از کارکرد به خارج-جلوگیری از خوردگی-مواد عایقرو قسمتهای فلزی ترانسفورماتور.
در مورد سفارش خرید روغن برای ترانسفورماتور ها دو مورد مهم را مد نظر قرار می دهیم
1-کیفیت روغن ترانسفورماتور
2-انتخاب نوع ترانسفورماتوربا در نظر گرفتن نوع روغن و در نظر گرفتن کیفیت آن، طراحی ترانسفورماتور ها مورد بحث قرار می گیرد به عنوان مثال یک نمونه از آن را یادآور می شویم که باعث زایل شدن روغن ترانسفورماتور گردید.
نمونه مورد اشاره این بود که یک نوع چسبی که در داخل ترانسفورماتور بکار برده شده بود توسط روغن آن چسب حل گردید و باعث این شد که ذرات چسب داخل روغن پراکنده شود و منجر به کاهش دی الکتریک روغن گردید. مورد دیگری که یادآوری نمودند این بود که کاتالیزور مس و آهن باعث از بین بردن روغن دانستند و همینطور اینکه چرا اصولاً کاغذ و روغن را به عنوان عایق در ترانسفورماتورها به کار میبرند. علتی را که برای آن توضیح داده بودند به این شرح بود که یک بار کاغذ عایقی بدون آغشته روغن، مورد تست عایقی قرار دادند، مشاهده شده بود که کاغذ عایقی آغشته به روغن بسیار خاصیّت عایقی آن نسبت به کاغذ عایقی بدون روغن بوده ماده ای به نام nemex که بین عایق ترانسفور ماتورها مورد استفاده قرار میگیرد مورد اشاره قرار گرفت که باعث ذایل شدن و از بین رفتن روغن گردید.
دو نوع آلودگی روغن ترانسفورماتورها :
1-آلودگی فیزیکی
2-آلودگی شیمیائی
200تست را کلاً بر روی ترانسفورماتورها می توان انجام داد که از میان آنها تستهای زیر دارای اهمّیت بیشتری می باشند.
1-تست اسیدیته
2-گازهای حل شده در روغن
3-کشش سطحی
4-pcb (بی فنیل پلی کلرید)
مهمترین منابع آلودگی روغن عبارتند از:
1- مواد معلق در روغن
2-آب
3-اکسیداسیون روغنبه
طور کلی 3 نوع تست برروی روغن ترانسفورماتور انجام می گیرد که عبارتند از:
1-تستهای فیزیکی
2-تست های شیمیائی
3- قسمت های الکتریکی
تكنولوژيساخت ترانسفورماتور فشار قوي فاقد روغن در طول عمر يكصد ساله ترانسفورماتورها، يك انقلاب محسوب مي شود. ايده استفاده از كابل با عايق پليمر پلي اتيلن (XLPE) به جاي هاديهاي مسي داراي عايق كاغذي از ذهن يك محقق ABB در سوئد به نام پرفسور “Mats lijon” تراوش كرده است.تكنولوژي استفاده از كابل به جاي هاديهاي مسي داراي عايق كاغذي، نخستين بار در سال 1998 در يك ژنراتور فشار قوي به نام “ Power Former” ساخت ABB به كار گرفته شد. در اين ژنراتور بر خلاف سابق كه از هاديهاي شمشي ( مستطيلي ) در سيم پيچي استاتور استفاده مي شد، از هاديهاي گرد استفاده شده است. همانطور كه از معادلات ماكسول استنباط مي شود، هاديهاي سيلندري ، توزيع ميدان الكتريكي متقارني دارند. بر اين اساس ژنراتوري مي توان ساخت كه برق را با سطح ولتاژ شبكه توليد كند بطوريكه نياز به ترانسفورماتور افزاينده نباشد. در نتيجه اين كار، تلفات الكتريكي به ميزان 30 در صد كاهش مي يابد.در يك كابل پليمري فشار قوي، ميدان الكتريكي در داخل كابل باقي مي ماند و سطح كابل داراي پتانسيل زمين مي باشد.در عين حال ميدان مغناطيسي لازم براي كار ترانسفورماتور تحت تاثير عايق كابل قرار نمي گيرد.در يك ترانسفورماتور خشك، استفاده از تكنولوژي كابل، امكانات تازه اي براي بهينه كردن طراحي ميدان هاي الكتريكي و مغناطيسي، نيروهاي مكانيكي و تنش هاي گرمايي فراهم كرده است.در فرايند تحقيقات و ساخت ترانسفورماتور خشك در ABB، در مرحله نخست يك ترانسفورماتور آزمايشي تكفاز با ظرفيت 10 مگا ولت آمپر طراحي و ساخته شد و در Ludivica در سوئد آزمايش گرديد. “ Dry former” اكنون در سطح ولتاژ هاي از 36 تا 145 كيلو ولت و ظرفيت تا 150 مگا ولت آمپر موجود است.
آشنايي با بعضي انواع ترانسفورماتورها
تاریخچه ساخت ترانسفور ماتور قدرت خشك

در ژوئيه 1999، شركت ABB، يك ترانسفور ماتور فشار قوي خشك به نام “Dryformer “ ساخته است كه نيازي به روغن جهت خنك شدن بار به عنوان دي الكتريك ندارد.در اين ترانسفورماتور به جاي استفاده از هاديهاي مسي با عايق كاغذي از كابل پليمري خشك با هادي سيلندري استفاده مي شود.تكنولوژي كابل استفاده شده در اين ترانسفورماتور قبلاً در ساخت يك ژنراتور فشار قوي به نام "Power Former" در شركتABB به كار گرفته شده است. نخستين نمونه از اين ترانسفورماتور اكنون در نيروگاه هيدروالكتروليك “Lotte fors” واقع در مركز سوئد نصب شده كه انتظار مي رود به دليل نياز روزافزون صنعت به ترانسفورماتور هايي كه از ايمني بيشتري برخوردار باشند و با محيط زيست نيز سازگاري بيشتري داشته باشند، با استقبال فراواني روبرو گردد.
ايده ساخت ترانسفورماتور فاقد روغن در اواسط دهه 90 مطرح شد. بررسي، طراحي و ساخت اين ترانسفورماتور از بهار سال 1996 در شركت ABB شروع شد. ABB در اين پروژه از همكاري چند شركت خدماتي برق از جمله Birka Kraft و Stora Enso نيز بر خوردار بوده است.
تكنولوژي

ساخت ترانسفورماتور فشار قوي فاقد روغن در طول عمر يكصد ساله ترانسفورماتورها، يك انقلاب محسوب مي شود. ايده استفاده از كابل با عايق پليمر پلي اتيلن (XLPE) به جاي هاديهاي مسي داراي عايق كاغذي از ذهن يك محقق ABB در سوئد به نام پرفسور “Mats lijon” تراوش كرده است.
تكنولوژي استفاده از كابل به جاي هاديهاي مسي داراي عايق كاغذي، نخستين بار در سال 1998 در يك ژنراتور فشار قوي به نام “ Power Former” ساخت ABB به كار گرفته شد. در اين ژنراتور بر خلاف سابق كه از هاديهاي شمشي ( مستطيلي ) در سيم پيچي استاتور استفاده مي شد، از هاديهاي گرد استفاده شده است. همانطور كه از معادلات ماكسول استنباط مي شود، هاديهاي سيلندري ، توزيع ميدان الكتريكي متقارني دارند. بر اين اساس ژنراتوري مي توان ساخت كه برق را با سطح ولتاژ شبكه توليد كند بطوريكه نياز به ترانسفورماتور افزاينده نباشد. در نتيجه اين كار، تلفات الكتريكي به ميزان 30 در صد كاهش مي يابد.
در يك كابل پليمري فشار قوي، ميدان الكتريكي در داخل كابل باقي مي ماند و سطح كابل داراي پتانسيل زمين مي باشد.در عين حال ميدان مغناطيسي لازم براي كار ترانسفورماتور تحت تاثير عايق كابل قرار نمي گيرد.در يك ترانسفورماتور خشك، استفاده از تكنولوژي كابل، امكانات تازه اي براي بهينه كردن طراحي ميدان هاي الكتريكي و مغناطيسي، نيروهاي مكانيكي و تنش هاي گرمايي فراهم كرده است.
در فرايند تحقيقات و ساخت ترانسفورماتور خشك در ABB، در مرحله نخست يك ترانسفورماتور آزمايشي تكفاز با ظرفيت 10 مگا ولت آمپر طراحي و ساخته شد و در Ludivica در سوئد آزمايش گرديد. “ Dry former” اكنون در سطح ولتاژ هاي از 36 تا 145 كيلو ولت و ظرفيت تا 150 مگا ولت آمپر موجود است.
نيروگاه مدرن Lotte fors

ترانسفورماتور خشك نصب شده در Lotte fors كه بصورت يك ترانسفورماتور – ژنراتور افزاينده عمل مي كند ، داراي ظرفيت 20 مگا ولت امپر بوده و با ولتاژ 140 كيلو ولت كار مي كند. اين واحد در ژانويه سال 2000 راه اندازي گرديد. اگر چه نيروگاه Lotte fors نيروگاه كوچكي با قدرت 13 مگا وات بوده و در قلب جنگلي در مركز سوئد قرار دارد اما به دليل نوسازي مستمر، نيروگاه بسيار مدرني شده است. در دهه 80 ميلادي ، توربين هاي مدرن قابل كنترل از راه دور در ان نصب شد و در سال 1996، كل سيستم كنترل آن نوسازي گرديد. اين نيروگاه اكنون كاملاً اتوماتيك بوده و از طريق ماهواره كنترل مي شود.
ويژگي هاي ترانسفورماتور خشك

ترانسفورماتور خشك داراي ويژگيهاي منحصر بفردي است از جمله:
1-به روغن براي خنك شده با به عنوان عايق الكتريكي نياز ندارد.
2-سازگاري اين نوع ترانسفورماتور با طبيعت و محيط زيست يكي از مهمترين ويژگي هاي آن است. به دليل عدم وجود روغن، خطر آلودگي خاك و منابع آب زير زميني و همچنين احتراق و خطر آتش سورزي كم ميشود.
3-با حذف روغن و كنترل ميدانهاي الكتريكي كه در نتيجه آن خطر ترانسفور ماتور از نظر ايمني افراد ومحيط زيست كاهش مي يابد، امكانات تازه اي از نظر محل نصب ترانسفورماتور فراهم ميشود.به اين ترتيب امكانات نصب ترانسفورماتور خشك در نقا شهري و جاهايي كه از نظر زيست محيطي حساس هستند، فراهم ميشود.
4-در ترانسفورماتور خشك به جاي بوشينگ چيني در قسمتهاي انتهايي از عايق سيسيكن را بر استفاده ميشود. به اين ترتيب خطر ترك خوردن چيني بوشينگ و نشت بخار روغن از بين ميرود.
5-كاهش مواد قابل اشتعال، نياز به تجهيزات گسترده آتش نشاني كاهش ميدهد. بنابراين از اين دستگاهها در محيط هاي سر پوشيده و نواحي سرپوشيده شهري نيز مي توان استفاده كرد.
6-با حذف روغن در ترانسفورماتور خشك، نياز به تانك هاي روغن، سنجه سطح روغن، آلارم گاز و ترمومتر روغن كاملاً از بين ميرود.بنابراين كار نصب آسانتر شده و تنها شامل اتصال كابلها و نصب تجهيزات خنك كننده خواهد بود.
7-از ديگر ويژگي هاي ترانسفورماتور خشك، كاهش تلفات الكتريكي است. يكي از راههاي كاهش تلفات و بهينه كردن طراحي ترانسفورماتور، نزديك كردن ترانسفورماتور به محل مصرف انرژي تا حد ممكن است تا از مزاياي انتقال نيرو به قدر كافي بهره برداري شود. با بكار گيري ترانسفورماتور خشك اين امر امكان پذير است .
8-اگر در پست، مشكل برق پيش آيد، خطري متوجه عايق ترانسفورماتور نمي شود. زيرا منبع اصلي گرما يعني تلفات در آن توليد نمي شود.بعلاوه چون هوا واسطه خنك شدن است و هوا هم مرتب تعويض و جابجا مي شود، مشكلي از بابت خنك شدن ترانسفورماتور بروز نمي كند.
نخستين تجربه نصب ترانسفررماتور خشك

ترانسفورماتورخشك براي اولين بار در اواخر سال 1999 در Lotte fors سوئد به آساني نصب شده و از آن هنگام تاكنون به خوبي كار كرده است. در آينده اي نزديك دومين واحد ترانسفورماتور خشك ساخت ABB (Dry former ) در يك نيروگاه هيدروالكتريك در سوئد نصب مي شود.
چشم انداز آينده تكنولوژي ترانسفورماتور خشك

شركت ABB در حال توسعه ترانسفورماتور خشك Dryformer است. چند سال اول از آن در مراكز شهري و آن دسته از نواحي كه از نظر محيط زيست حساس هستند، بهره برداري مي شود. تحقيقات فني ديگري نيز در زمينه تپ چنجر خشك، بهبود ترمينال هاي كابل و سيستم هاي خنك كن در حال انجام است. در حال حاضر مهمترين كار ABB، توسعه و سازگار كردن Dryformer با نياز مصرف كنندگان براي كار در شبكه و ايفاي نقش مورد انتظار در پست هاست.
ساخت ترانسفور ماتور قدرت خشك

ساخت ترانسفورماتور فشار قوي فاقد روغن در طول عمر يكصد ساله ترانسفورماتورها، يك انقلاب محسوب مي شود. ايده استفاده از كابل با عايق پليمر پلي اتيلن (XLPE) به جاي هاديهاي مسي داراي عايق كاغذي از ذهن يك محقق ABB در سوئد به نام پرفسور “Mats lijon” تراوش كرده است.
تكنولوژي استفاده از كابل به جاي هاديهاي مسي داراي عايق كاغذي، نخستين بار در سال 1998 در يك ژنراتور فشار قوي به نام “ Power Former” ساخت ABB به كار گرفته شد. در اين ژنراتور بر خلاف سابق كه از هاديهاي شمشي ( مستطيلي ) در سيم پيچي استاتور استفاده مي شد، از هاديهاي گرد استفاده شده است. همانطور كه از معادلات ماكسول استنباط مي شود، هاديهاي سيلندري ، توزيع ميدان الكتريكي متقارني دارند. بر اين اساس ژنراتوري مي توان ساخت كه برق را با سطح ولتاژ شبكه توليد كند بطوريكه نياز به ترانسفورماتور افزاينده نباشد. در نتيجه اين كار، تلفات الكتريكي به ميزان 30 در صد كاهش مي يابد.
در فرايند تحقيقات و ساخت ترانسفورماتور خشك در ABB، در مرحله نخست يك ترانسفورماتور آزمايشي تكفاز با ظرفيت 10 مگا ولت آمپر طراحي و ساخته شد و در Ludivica در سوئد آزمايش گرديد. “ Dry former” اكنون در سطح ولتاژ هاي از 36 تا 145 كيلو ولت و ظرفيت تا 150 مگا ولت آمپر موجود است.
نيروگاه مدرنLotte fors

ترانسفورماتور خشك نصب شده در Lottefors كه بصورت يك ترانسفورماتور – ژنراتور افزاينده عمل مي كند ، داراي ظرفيت 20 مگا ولت امپر بوده و با ولتاژ 140 كيلو ولت كار مي كند. اين واحد در ژانويه سال 2000 راه اندازي گرديد. اگر چه نيروگاه Lottefors نيروگاه كوچكي با قدرت 13 مگا وات بوده و در قلب جنگلي در مركز سوئد قرار دارد اما به دليل نوسازي مستمر، نيروگاه بسيار مدرني شده است. در دهه 80 ميلادي ، توربين هاي مدرن قابل كنترل از راه دور در ان نصب شد و در سال 1996، كل سيستم كنترل آن نوسازي گرديد. اين نيروگاه اكنون كاملاً اتوماتيك بوده و از طريق ماهواره كنترل مي شود.
ويژگي هاي ترانسفورماتور خشك

ترانسفورماتور خشك داراي ويژگيهاي منحصر بفردي است از جمله:
1-به روغن براي خنك شده با به عنوان عايق الكتريكي نياز ندارد.
2-سازگاري اين نوع ترانسفورماتور با طبيعت و محيط زيست يكي از مهمترين ويژگي هاي آن است. به دليل عدم وجود روغن، خطر آلودگي خاك و منابع آب زير زميني و همچنين احتراق و خطر آتش سورزي كم ميشود.
3-با حذف روغن و كنترل ميدانهاي الكتريكي كه در نتيجه آن خطر ترانسفور ماتور از نظر ايمني افراد ومحيط زيست كاهش مي يابد، امكانات تازه اي از نظر محل نصب ترانسفورماتور فراهم ميشود.به اين ترتيب امكانات نصب ترانسفورماتور خشك در نقا شهري و جاهايي كه از نظر زيست محيطي حساس هستند، فراهم ميشود.
4-در ترانسفورماتور خشك به جاي بوشينگ چيني در قسمتهاي انتهايي از عايق سيسيكن را بر استفاده ميشود. به اين ترتيب خطر ترك خوردن چيني بوشينگ و نشت بخار روغن از بين ميرود.
5-كاهش مواد قابل اشتعال، نياز به تجهيزات گسترده آتش نشاني كاهش ميدهد. بنابراين از اين دستگاهها در محيط هاي سر پوشيده و نواحي سرپوشيده شهري نيز مي توان استفاده كرد.
6-با حذف روغن در ترانسفورماتور خشك، نياز به تانك هاي روغن، سنجه سطح روغن، آلارم گاز و ترمومتر روغن كاملاً از بين ميرود.بنابراين كار نصب آسانتر شده و تنها شامل اتصال كابلها و نصب تجهيزات خنك كننده خواهد بود.
7-از ديگر ويژگي هاي ترانسفورماتور خشك، كاهش تلفات الكتريكي است. يكي از راههاي كاهش تلفات و بهينه كردن طراحي ترانسفورماتور، نزديك كردن ترانسفورماتور به محل مصرف انرژي تا حد ممكن است تا از مزاياي انتقال نيرو به قدر كافي بهره برداري شود. با بكار گيري ترانسفورماتور خشك اين امر امكان پذير است .
8-اگر در پست، مشكل برق پيش آيد، خطري متوجه عايق ترانسفورماتور نمي شود. زيرا منبع اصلي گرما يعني تلفات در آن توليد نمي شود.بعلاوه چون هوا واسطه خنك شدن است و هوا هم مرتب تعويض و جابجا مي شود، مشكلي از بابت خنك شدن ترانسفورماتور بروز نمي كند.
نخستين تجربه نصب ترانسفررماتور خشك

ترانسفورماتورخشك براي اولين بار در اواخر سال 1999 در Lotte fors سوئد به آساني نصب شده و از آن هنگام تاكنون به خوبي كار كرده است. در آينده اي نزديك دومين واحد ترانسفورماتور خشك ساخت ABB (Dry former ) در يك نيروگاه هيدروالكتريك در سوئد نصب مي شود.
چشم انداز آينده تكنولوژي ترانسفورماتور خشك

شركت ABB در حال توسعه ترانسفورماتور خشك Dryformerاست. چند سال اول از آن در مراكز شهري و آن دسته از نواحي كه از نظر محيط زيست حساس هستند، بهره برداري مي شود. تحقيقات فني ديگري نيز در زمينه تپ چنجر خشك، بهبود ترمينال هاي كابل و سيستم هاي خنك كن در حال انجام است. در حال حاضر مهمترين كار ABB، توسعه و سازگار كردن Dryformer با نياز مصرف كنندگان براي كار در شبكه و ايفاي نقش مورد انتظار در پست هاست.
در يك كابل پليمري فشار قوي، ميدان الكتريكي در داخل كابل باقي مي ماند و سطح كابل داراي پتانسيل زمين مي باشد.در عين حال ميدان مغناطيسي لازم براي كار ترانسفورماتور تحت تاثير عايق كابل قرار نمي گيرد.در يك ترانسفورماتور خشك، استفاده از تكنولوژي كابل، امكانات تازه اي براي بهينه كردن طراحي ميدان هاي الكتريكي و مغناطيسي، نيروهاي مكانيكي و تنش هاي گرمايي فراهم كرده است.
اصول خشك كردن ترانسفورماتورهای قدرت


http://www.rasekhoon.net/_WebsiteData/Article/ArticleImages/1/1388/ordibehesht/09/2504281.jpg
روغن ترانسفورماتورهای قدرت نقش بسیار مهمی در عملكرد ترانسفورماتورها دارند. نقش عایق كنندگی، خنك كنندگی و تشخیص عیب از جمله مهمترین وظایف روغن می باشند. با پیرشدن ترانسفورماتور ، روغن این دستگاه بعضی از خصوصیات شیمیایی و الكتریكی خود را از دست می دهد. از جمله مهمترین این خصوصیات می توان به خصوصیات الكتریكی كه حائز اهمیت می باشند، اشاره نمود.
دلایل اصلی كه روغن ترانسفورماتورهای قدرت را دچار مشكل می نمایند عبارتند از:
۱) افزایش ذرات معلق در روغن
۲) وجود آب به مقدار زیاد در روغن
۳) وجود آلودگی های شیمیایی مانند اسیدیته و...
مسائل فوق باعث تغییر پارامترهای متعدد می شوند. به عنوان مثال افزایش ذرات معلق و وجود آن باعث كاستن قدرت دی الكتریك روغن و افزایش اسیدیته، باعث خوردگی كاغذ و اجزای داخلی ترانسفورماتور می شود. برای بهبود روغن ترانسفورماتوری كه دچار ضعف های متعدد شده است می توان از فیلتراسیون استفاده نمود. با فیلتر نمودن روغن می توان ذرات معلق آن را جدا نمود و در نتیجه ولتاژ شكست را بالا برد. می توان با خلاء نمودن روغن ، آب را بصورت بخار از روغن جدا نمود. حذف آلودگی های شیمیایی فقط با كمك فیلترهای شیمیایی ممكن است.
از جمله مهمترین آلودگی كه روغن ترانسفورماتور را تحت تأثیر قرار می دهد وجود آب به مقدار كم در داخل روغن است. جدا نمودن آن در داخل ترانسفورماتور به راحتی امكان پذیر نمی باشد. علت این مسأله وجود مقادیر بسیار زیاد آب داخل كاغذ ترانسفورماتور می باشد كه با جدا نمودن آب روغن دوباره جایگزین آن می شود.
● روشهای فیلتر نمودن

الف) روشهای Off-line
از زمانهای دور برای بهبود کیفیت عایقی روغن ترانسفورماتورهای قدرت از روشهای فیلتراسیون هنگامی که ترانسفورماتور خاموش بوده است استفاده می کردند. در این روش هنگامی که ترانسفورماتور خاموش می باشد به مدت چند شبانه روز به صورت پیوسته روغن را داخل ترانسفورماتور چرخانده و آنرا در بیرون تحت فیلتراسیون و خلاء به منظور جدا نمودن ذرات معلق و آب محلول قرار می دادند.
این روش دارای معایب فراوانی است از جمله لزوم داغ نمودن روغن ترانسفورماتور و همچنین لزوم خاموش نمودن ترانسفورماتور را می توان نام برد.
ب) روشهای نوین – روشهای در حین کار
برای جدا نمودن آب به صورت بهینه، لازم است كه از فیلترهای در حین كار استفاده نمود. مهمترین مزایای فیلترهای (خشك كن) های در حین كار خشك نمودن بهینه ترانسفورماتور در طول زمان و همچنین عدم لزوم خاموشی ترانسفورماتور را می توان عنوان نمود. اصول عملکرد این فیلترها مانند شکل زیر است که در آن روغن از مخزن تحت فشار خارج شده و در مسیر آن یک فیلتر فیزیکی قرار می گیرد. در اینجا ذرات معلق فیلتر شده و تحت تاثیر خلاء آب محلول در آن گرفته می شود. روغن فیلتر شده به وسیله پمپ به ترانسفورماتور برگردانده می شود. این چرخه با دبی پایین در حدود ۲۵۰ لیتر در ساعت به صورت پیوسته از چند ماه تا چند سال با توجه به وضعیت ترانسفورماتور صورت می گیرد.
● مزایای خشك كردن On-Line روغن و كاغذ عایقی ترانسفورماتورهای قدرت با استفاده ازدستگاه V۳۰

▪ رطوبت زدائی از روغن ترانسفورماتور بصورت On-Line
▪ افزایش ولتاژ شکست روغن عایقی
▪ رطوبت زدائی از کاغذ عایقی ترانسفورماتور
▪ کاهش میزان ذرات معلق داخل روغن ترانس
▪ کاهش میزان ضریب تلفات عایقی روغن
▪ کاهش میزان اسیدیته روغن
▪ افزایش قابلیت بارگیری ترانسفورماتور
▪ افزایش عمر باقیمانده ترانسفورماتور
▪ عملکرد مطمئن و عدم تأثیر سو بر بهره برداری عادی از ترانسفورماتور
▪ گاززدائی از روغن ترانسفورماتور با استفاده از روش
ترانسفورماتورهاي اندازه گيري ولتاژ

در حالت‌ كلي‌ ترانسفورماتورهاي‌ اندازه‌گيري‌ ولتاژ به‌ دو گروه‌ عمده‌ تقسيم‌ مي‌شوند.اين‌ دو گروه‌ عبارتند از: ترانسفورماتورهاي‌ اندازه‌گيري‌ ولتاژ سلفي‌ يا مغناطيسي‌ وترانسفورماتورهاي‌ اندازه‌گيري‌ ولتاژخازني‌ (CVT-capacitor voltage transformer). در سيستمهاي‌ قدرت‌، تا ولتاژ 145 كيلوولت‌ استفاده‌ از ترانسفورماتورهاي ‌اندازه‌گيري‌ ولتاژ سلفي‌ و در سيستمهاي‌ قدرت‌ با ولتاژهاي‌ بالاتر، استفاده‌ ازترانسفورماتورهاي‌ اندازه‌گيري‌ ولتاژ خازني‌ مقرون‌ به‌ صرفه‌ است‌.
در عمل‌، دو نوع‌ مختلف‌ ترانسفورماتورهاي‌ اندازه‌گيري‌ ولتاژ خازني‌ با خازن‌ بالا وخازن‌ پايين‌ ساخته‌ مي‌شود. با توجه‌ به‌ كلاس‌ دقت‌ ترانسفورماتور، در شرايط كار مختلف‌آن‌، مانند آلودگي‌ محيط و نوسانات‌، تغييرات‌ فركانس‌ و پاسخ‌ حالت‌ گذاري‌ سيستم‌، ترانسفورماتورهاي‌ اندازه‌گيري‌ ولتاژ خازني‌ با خازن‌ بالا بهترين‌ انتخاب‌ است‌. درسيستمهاي‌ PLC، ترانسفورماتورهاي‌ اندازه‌گيري‌ ولتاژ خازني‌، مورد استفاده‌ قرارمي‌گيرند. همان‌ طور كه‌ مي‌دانيم‌ با استفاده‌ از سيستمهاي‌ PLC مي‌توان‌ مانند خطوطمخابراتي‌، انتقال‌ اطلاعات‌ را با خطوط فشار قوي‌ انجام‌ داد. محدوه‌ كار يك‌ ترانسفورماتوراندازه‌گيري ولتاژ در سيستمهاي‌ اندازه‌گيري‌، بين‌ 80 تا 120 درصد ولتاژ نامي‌ و درسيستمهاي‌ محافظتي‌، بين‌ 05/0 تا 5/1 يا 9/1 درصد ولتاژ نامي‌ آن‌ سيستم‌ تغيير مي‌كند.
در عمل‌ با استفاده‌ از يك‌ مقاومت‌ سري‌ مي‌توان‌ محدوده‌ اندازه‌گيري‌ يك‌ ولت‌ متر راافزايش‌ داد اين‌ روش‌ معمولا در سيستمهايي‌ كه‌ ولتاژ بالايي‌ ندارند استفاده‌ مي‌شود ولي‌ اگرسيستمي‌ ولتاژ بالا داشته‌ باشد اين‌ روش‌ مشكلات‌ فراواني‌ خواهد داشت‌. در سيستمهاي‌ولتاژ بالا، ايزولاسيون‌ مقاومتهاي‌ سري‌ موجود در ولت‌ مترها (براي‌ اندازه‌گيري‌ ولتاژسيستم‌) مقرون‌ به‌ صرفه‌ نبوده‌ و علي‌ رغم‌ ايزولاسيون‌ مقاومتهاي‌ سري‌، با توجه‌ به‌ ولتاژبالاي‌ سيستم‌، وصل‌ سيستم‌ فشار قوي‌ به‌ دستگاه‌ اندازه‌گيري‌ بدون‌ استفاده‌ ازترانسفورماتور ولتاژ، كار خطرناكي‌ است‌. با توجه‌ به‌ موارد فوق‌ در سيستمهاي‌ قدرت‌ براي ‌اندازه‌گيري‌ ولتاژ، از ترانسفورماتورهاي‌ اندازه‌گيري‌ استفاده‌ مي‌كنند.
ضريب‌ افزايش‌ ولتاژ ترانسفورماتور

در يك‌ سيستم‌ قدرت‌، ترانسفورماتوراندازه‌گيري ولتاژ سلفي‌ يا خازني‌، معمولا بين‌ فاز و زمين‌ قرار مي‌گيرد. در سيستم‌ سه‌ فاز در لحظه‌ نوسانات‌ سيستم‌، ممكن‌است‌ ولتاژ دوسر ترانسفورماتور اندازه‌گيري‌ ولتاژ به‌ ولتاژهاي‌ بالايي‌ افزايش‌ يابد. باتوجه‌ به‌ استاندارد IECضريب‌ افزايش‌ ولتاژترانسفورماتور معمولا 2/1 انتخاب‌مي‌شود. يك‌ ترانسفورماتور اندازه‌گيري‌ولتاژ بايد به‌ صورت‌ مداوم‌ در ولتاژي‌مساوي‌ ولتاژ نامي‌، ضرب‌ در ضريب‌افزايش‌ ولتاژ ترانسفورماتور، به‌ كار خودبدون‌ هيچ‌ مشكلي‌ ادامه‌ داده‌ و در اين‌ ولتاژ،ترانسفورماتور تحت‌ هر شرايطي‌ به‌ حالت‌اشباع‌ وارد نشود.
كلاس‌ دقت‌ ترانسفورماتورهاي‌اندازه‌ گيري‌ ولتاژ:

مانند ترانسفورماتورهاي‌ اندازه‌گيري‌جريان‌، در ترانسفورماتورهاي‌ اندازه‌گيري‌ولتاژ نيز كلاس‌ دقت‌ ترانسفورماتور با توجه‌به‌ مورد استفاده‌ آن‌ در سيستمهاي‌ حفاظتي‌يا اندازه‌گيري‌ تغيير مي‌كند. درترانسفورماتورهاي‌ اندازه‌گيري‌ جريان‌، هر يك‌ از سيم‌ پيچهاي‌ ثانويه‌ ترانسفورماتور در اطراف‌ هسته‌هاي‌ جداگانه‌اي‌ پيچيده‌مي‌شوند. برعكس‌ اگر ترانسفورماتورهاي‌اندازه‌ گيري‌ ولتاژ داراي‌ سيم‌ پيچهاي‌ ثانويه‌متعددي‌ باشد تمام‌ اين‌ سيم‌ پيچها در اطراف‌يك‌ هسته‌ مشترك‌ قرار مي‌گيرند. درترانسفورماتورهاي‌ اندازه‌گيري‌ ولتاژ، افت‌ولتاژ در سيم‌ پيچ‌ اوليه‌ با مجموع‌ جريان‌بارهاي‌ سيم‌ پيچهاي‌ ثانويه‌ آن‌ رابطه‌ مستقيم‌ دارد.
ساختمان‌ ترانسفورماتورهاي‌اندازه‌ گيري‌ ولتاژ:

ترانسفورماتورهاي‌ اندازه‌گيري‌ ولتاژمانند ترانسفورماتورهاي‌ اندازه‌گيري‌ جريان‌،انواع‌ مختلفي‌ ندارند. در سيستمهاي‌ ولتاژخيلي‌ زياد، معمولا اتصال‌ كاسكادترانسفورماتورهاي‌ اندازه‌گيري‌ ولتاژ مورداستفاده‌ قرار مي‌گيرد. البته‌ تحت‌ شرايط ولتاژبالا استفاده‌ از ترانسفورماتورهاي‌ ولتاژ خازني‌، مقرون‌ به‌ صرفه‌ است‌.
مشخصه‌هاي‌ انتخاب‌ ترانسفورماتور ولتاژ:

اگر كلاس‌ دقت‌ ترانسفورماتور و توان‌نامي‌ آن‌ خيلي‌ زياد انتخاب‌ شود، ابعادترانسفورماتور بسيار بزرگ‌ بوده‌ و ساخت‌ آن‌مقرون‌ به‌ صرفه‌ نخواهد بود. در نتيجه‌باتوجه‌ به‌ مورد استفاده‌ مناسب‌ترانسفورماتور بايد كلاس‌ دقت‌ و توان‌ آن‌ درنظر گرفته‌ شود.
سيم‌ پيچهاي‌ ثانويه‌ يك‌ ترانسفورماتوراندازه‌گيري ولتاژ از همديگر جدا نبوده‌ و دراطراف‌ يك‌ هسته‌ مشترك‌، پيچيده‌ مي‌شونددر نتيجه‌ اگر يكي‌ از سيم‌ پيچهاي‌ ثانويه‌ترانسفورماتور به‌ دستگاه‌ اندازه‌گيري‌ و سيم‌پيچ‌ ديگر به‌ دستگاه‌ حفاظتي‌ (مانند رله‌)وصل‌ شود در اين‌ حالت‌ براي‌ انتخاب‌ توان‌نامي‌ و همچنين‌ كلاس‌ دقت‌ ترانسفورماتورمثالي‌ را در نظر مي‌گيريم‌:
-دستگاه‌ اندازه‌گيري‌ با توان‌: 30ولت‌ آمپر-كلاس‌ دقت‌ دستگاه‌ اندازه‌گيري‌: 5/0
-دستگاه‌ حفاظتي‌ (رله‌) باتوان‌: 120ولت‌آمپر
-كلاس‌ دقت‌ دستگاه‌ حفاظتي‌ (رله‌): 3P
با توجه‌ به‌ مقادير داده‌ شده‌، كلاس‌ دقت‌ترانسفورماتور اندازه‌گيري‌ ولتاژ 5/0 و توان‌آن‌ 150 ولت‌ آمپر انتخاب‌ مي‌شود. در ترانسفورماتورهاي‌ اندازه‌گيري‌ ولتاژ، اگربيش‌ از يك‌ سيم‌ پيچ‌ ثانويه‌ مورد نياز باشد باتوجه‌ به‌ چگونگي‌ استفاده‌ از بارها(كه‌ درادامه‌ شرح‌ داده‌ مي‌شود) و همچنين‌ با در نظر گرفتن‌ كلاس‌ دقت‌ آنها ترانسفورماتور انتخاب‌ مي‌شود:
(a): يكي‌ از سيم‌ پيچهاي‌ ثانويه‌ باردار بوده‌ وسيم‌ پيچهاي‌ ديگر بدون‌ بار باشد.
(b): تمام‌ سيم‌ پيچهاي‌ ثانويه‌ باردار باشد.
بار حرارتي‌ يك‌ ترانسفورماتوراندازه‌گيري ولتاژ، با در نظر گرفتن‌ ضريب‌ولتاژ آن‌، به‌ بيشترين‌ مقدار باري‌ گفته‌مي‌شود كه‌ ترانسفورماتور بتواند بدون‌افزايش‌ درجه‌ حرارت‌ از مقدار مشخص‌شده‌، آن‌ بار را تغذيه‌ كند. با توجه‌ به‌استاندارد IEC-186 كلاسهاي‌ دقت‌دستگاههاي‌ اندازه‌گيري‌ بين‌ 80 تا 120درصد ولتاژ نامي‌ و بين‌ 25 تا 100 درصد بارنامي‌ و كلاسهاي‌ دقت‌ دستگاههاي‌ حفاظتي‌بين‌ 5 درصد ولتاژ نامي‌ تا Vش برابر آن‌ وهمچنين‌ بين‌ 25 تا 100 درصد بار نامي‌صادق‌ هستند. دستگاههاي‌ اندازه‌گيري‌ و حفاظتي‌مدرن‌، تلفات‌ كمتري‌ دارند در نتيجه‌ ممكن‌است‌ بار كل‌ ترانسفورماتور اندازه‌گيري‌ ولتاژاز 25 درصد مقدار بار نامي‌ آن‌ كوچكتر باشددر نتيجه‌ مي‌توان‌گفت‌ كه‌ در اين‌ حالت‌ خطاي‌ نسبت‌ دورها افزايش‌ خواهد يافت‌. در ترانسفورماتورهاي‌اندازه‌ گيري‌ ولتاژ، خطاي‌ نسبت‌ دورها دربارهاي‌ نزديك‌ به‌ بار نامي‌ ترانسفورماتور به‌مقدار مينيمم‌ خود مي‌رسد.
در حالت‌ كلي‌ با توجه‌ به‌ موارد فوق‌مي‌توان‌ گفت‌ كه‌ بار نامي‌ ترانسفورماتور ولتاژ بهتر است‌ با مجموع‌ بارهاي‌ وصل‌ شده‌به‌ آن‌ برابر باشد.
خطاهاي‌ اندازه‌گيري‌ترانسفورماتو ر ولتاژ:

در حالت‌ ايده‌ آل‌، افت‌ ولتاژ در روي‌امپدانس‌ سيم‌ پيچهاي‌ اوليه‌ و ثانويه‌ ترانسفورماتور برابر صفر ولت‌ بوده‌ و درنتيجه‌ رابطه‌ بين‌ ولتاژ اوليه‌ و ثانويه‌ آن‌عبارت‌ خواهد بود از:
در ترانسفورماتورهاي‌ اندازه‌گيري‌ ولتاژموجودر در عمل‌، به‌ علت‌ افت‌ ولتاژ در روي‌ مقاومت‌ سيم‌ پيچهاي‌ اوليه‌ و ثانويه‌ وهمچنين‌ به‌ علت‌ افت‌ ولتاژ در راكتانسهاي‌سيم‌ پيچهاي‌ اوليه‌ و ثانويه‌ (ناشي‌ از شارپراكندگي‌ موجود در سيم‌ پيچها)، رابطه‌ اوليه ‌و ثانويه‌ يك‌ ترانسفورماتور حقيقي‌ خواهد بود.
با توجه‌ به‌ مواردي‌ كه‌ مطرح‌ شد،خطاي‌ موجود در ترانسفورماتورهاي‌ ولتاژحقيقي‌ را مانند ترانسفورماتورهاي‌ جريان‌ باخطاي‌ نسبت‌ دورها و خطاي‌ زاويه‌اي‌ مي‌توان‌ نشان‌ داد.
اگر ولتاژ ثانويه‌ خيلي‌ بزرگ‌ باشد،خطاي‌ نسبت‌ دورها مثبت‌ خواهد بود. ازطرفي‌ اگر ولتاژ ثانويه‌ نسبت‌ به‌ ولتاژ اوليه‌پيش‌ فاز باشد خطاي‌ زاويه‌اي‌ مثبت‌مي‌شود.
براي‌ محاسبه‌ خطاي‌ نسبت‌ دورها وخطاي‌ زاويه‌ در يك‌ ترانسفورماتور اندازه‌گيري‌ ولتاژ، مدار معادل‌ الكتريكي‌ يك‌ترانسفورماتور حقيقي‌ كه‌ به‌ طرف‌ ثانويه‌انتقال‌ يافته‌ است‌ را در نظر مي‌گيريم‌.
همان‌ طور كه‌مي‌دانيم‌ امپدانس‌ معادل‌ سيم‌پيچها ازمجموع‌ مقاومت‌ اهمي‌ سيم‌پيچ‌ و راكتانس‌ناشي‌ از سيل‌ پراكندگي‌ شار اطراف‌ سيم‌ پيچ‌به‌ دست‌ مي‌آيد. افت‌ ولتاژ در امپدانسهاي‌اوليه‌ و ثانويه‌ ترانسفورماتور را در دو حالت‌بارداري‌ و بي‌ باري‌ مورد بررسي‌ قرار مي‌دهيم‌.
از آن‌ جا كه‌، در حالت‌ بي‌ باري‌ به‌ علت‌جريان‌ كم‌ موجود در مدار، افت‌ ولتاژ درامپدانس‌ سيم‌ پيچ‌ اوليه‌ ترانسفورماتور مقدارناچيزي‌ است‌ لذا در اين‌ قسمت‌ فقط افت‌ولتاژ، در حالت‌ بارداري‌ ترانسفورماتور رامورد بررسي‌ قرار مي‌دهيم‌. در حالت‌بارداري‌، شدت‌ جريان‌ عبوري‌ از امپدانس‌ معادل‌ هسته‌، بسيار كوچكتر از شدت‌ جريان‌بار ترانسفورماتور بوده‌ و در نتيجه‌ از امپدانس‌ معادل‌ هسته‌صرف‌نظر شده‌ است‌.
تغييرات‌ خطاهاي‌ اندازه‌گيري‌ نسبت‌به‌ تغييرات‌ ولتاژ:

در ترانسفورماتور اندازه‌گيري‌ ولتاژ،خطاهاي‌ اندازه‌گيري‌ در ولتاژهاي‌ مختلف‌سيستم‌، مقادير مختلفي‌ خواهد داشت‌. اين‌تغييرات‌ با توجه‌ به‌ غير خطي‌ بودن‌ منحني‌مشخصه‌ مغناطيس‌ شوندگي‌ هسته ‌ترانسفورماتور، حاصل‌ مي‌شود. تغييرات‌ خطاهاي‌ اندازه‌گيري‌ نسبت‌ به‌تغييرات‌ ولتاژ سيستم‌ را در حالت‌ بارداري‌ وبي‌ باري‌ نشان‌ مي‌دهد. با توجه‌ به‌ اين‌ شكل‌مي‌توان‌ گفت‌ كه‌ تغييرات‌ خطاهاي‌اندازه‌گيري‌ در محدوده‌ وسيعي‌ از تغييرات‌ولتاژ سيستم‌، تغيير چنداني‌ نمي‌كند.
ابعاد سيم‌ پيچهاي‌ ترانسفورماتور:

در طراحي‌ يك‌ ترانسفورماتور، سطح‌مقطع‌ مس‌ سيم‌ پيچها را با در نظر گرفتن‌كلاس‌ دقت‌ و خطاي‌ مشخص‌ شده‌ به‌ دست‌مي‌آوريم‌. هنگام‌ محاسبه‌ سطح‌ مقطع‌ مس‌سيم‌ پيچها، مواردي‌ را در نظر مي‌گيريم‌ كه‌عبارتند از: ولتاژ نامي‌ سيم‌ پيچ‌ اوليه‌ وثانويه‌ ، تعداد دور هر يك‌ از سيم‌ پيچها، بارنامي‌، كلاس‌ دقت‌، فركانس‌ نامي‌ و ضريب‌ولتاژ نامي‌ ترانسفورماتور.
اساس‌ روش‌ فوق‌ به‌ اين‌ شرح‌ است‌:
1-محاسبه‌ تعداد دور سيم‌ پيچهاي‌ترانسفورماتور: براي‌ محاسبه‌ تعداد دورسيم‌پيچهاي‌ ترانسفورماتور رابطه‌ (10) را درنظر مي‌گيريم‌:
در اين‌ رابطه‌ داريم‌:
تعداد دور سيم‌پيچ‌اوليه‌ يا ثانويه‌=N
ولتاژنامي‌ سيم‌پيچ‌ اوليه‌ يا ثانويه‌=Vn
فركانس‌ نامي‌ ترانسفورماتور=¾
سطح‌ مقطع‌ موثر هسته‌=Aj
چگالي‌ شار مغناطيسي‌ در ولتاژ نامي‌= Bnسيم‌پيچ‌ اوليه‌ و يا ثانويه‌
در حالت‌ كلي‌ مي‌توان‌ گفت‌ كه‌ مقدارBn به‌ ضريب‌ ولتاژ نامي‌ ترانسفورماتوربستگي‌ دارد.
2- محاسبه‌ مقاومت‌ اهمي‌ اتصال‌ كوتاه‌ RK:براي‌ محاسبه‌ مقاومت‌ اهمي‌ اتصال‌ كوتاه‌.
با توجه‌ به‌ كلاس‌ دقت‌ ترانسفورماتور،مقدار درصد افت‌ ولتاژ مقاومتي‌ به‌ دست‌مي‌آيد.
3- سطح‌ مقطع‌ مس‌ سيم‌ پيچهاي‌ اوليه‌ وثانويه‌ ترانسفورماتور را با توجه‌ به‌ مقدارRK، انتخاب‌ مي‌كنيم‌.
4- بعد از محاسبه‌ ابعاد سيم‌ پيچهاي‌ترانسفورماتور، راكتاس‌ معادل‌ سيم‌ پيچها را(XK) به‌ دست‌ مي‌آوريم‌.
5- خطاي‌ نسبت‌ دورها و خطاي‌ زاويه‌اي‌را محاسبه‌ مي‌كنيم‌. اگر مقادير به‌ دست‌ آمده‌بزرگ‌ باشد با توجه‌ به‌ كلاس‌ دقت‌ترانسفورماتور، براي‌ به‌ دست‌ آوردن‌ خطاي‌مشخص‌ شده‌، سطح‌ مقطع‌ مس‌ سيم‌ پيچها را افزايش‌ مي‌دهيم‌.
كلاس‌ دقت‌ و ظرفيت‌ بارترانسفورماتور

در حالت‌ كلي‌، ظرفيت‌ بارترانسفورماتور به‌ امپدانس‌ كوتاه‌ آن‌ بستگي‌دارد. يعني‌ مي‌توان‌ گفت‌ كه‌ اگر امپدانس‌اتصال‌ كوتاه‌ ترانسفورماتور، مقدار كوچكي‌باشد، ظرفيت‌ بار آن‌ مقدار بزرگي‌ خواهد بودو برعكس‌. از طرفي‌ ظرفيت‌ بارترانسفورماتور به‌ كلاس‌ دقت‌ آن‌ نيز بستگي‌دارد. به‌ عنوان‌ مثال‌ اگر ظرفيت‌ بار، 200ولت‌ آمپر با كلاس‌ دقت‌ 1 در نظر گرفته‌ شوددر كلاس‌ دقت‌ 0/5 ظرفيت‌ بار به‌ 100 ولت‌آمپر كاهش‌ خواهد يافت‌. در يك‌ترانسفورماتور، نسبت‌ كلاس‌ دقت‌ به‌ظرفيت‌ بار، هميشه‌ مقدار ثابتي‌ است‌.
ترانسفورماتورهاي ابررسانا

ترانسفورماتورها يكي از مهمترين عناصر شبكه هاي انتقال و توزيع هستند . در ترانسفورماتورها انرژي الكتريكي در مس سيم پيچها ، آهن هسته ، تانك ترانس و سازه هاي نگهدارنده بصورت حرارت تلف مي شود. حتي در زمانيكه ترانسفورماتور بدون بار است ، در هسته تلفات بي باري (NLL) بوجود مي آيد. در نتيجه مطالعات و بررسيهاي انجام شده ، در 50 ساله اخير محققان موفق شده اند با صرف هزينه اي دو برابر براي هسته ، تلفات بي باري را به يك سوم كاهش دهند. اخيراً با جايگزيني فلزات بيشكل و غير بلوري (Amorphous) بجاي آهن سيليكوني درهسته ترانسفورماتورهاي توزيع با قدرت نامي كوچكتر از 100 KVA ، تلفات بي باري باز هم كاهش يافته است . اين كار هنوز در مورد ترانسفورماتورهاي بزرگ با قدرت نامي بزرگتر از 500KVA انجام نشده است . اگرچه براي هر ترانسفورماتور ، 1 درصد توان نامي آن بعنــوانتوان تلفـاتي در نظر گرفتـه مي شود، اما بايد توجه داشت كه آزاد سازي بخش كوچكي از اين تلفات در طول عمر ترانسفورماتور صرفه جوئي كلاني به همراه خواهد داشت .
در ترانسفورماتورهاي قدرت معمول ، تقريباً 80% از كل تلفات ، مربوط به تلفات بارداري ترانسفورماتور (LL) است كه از اين 80% ، سهم تلفات اهمي سيم پيچها 80 % بوده و 20 % ديگر مربوط به تلفات ناشي از جريانهاي فوكو و شارهاي پراكنده است . لذا تلاشهاي زيادي جهت كاهش تلفات بارداري صورت مي گيرد. در ابررساناها بعلت عدم وجود مقاومت اهمي در برابر جريان d c تلفات اهمي برابر با صفر است . لذا با استفاده از ابررساناها در ترانسفورماتورها، تلفات كل ترانسفورماتور، كاهش قابل ملاحظه اي خواهد يافت. در مقابل جريان ac ، در ابر رساناها تلفاتي از نوع تلفات فوكو رخ مي دهد. گرماي بوجود آمده از اين تلفات بايد با استفاده از سيستم هاي خنك كننده دفع گردد.بررسيهاي بعمل آمده حاكي از آن است كه ترانسفورماتورهاي ابررسانا با قدرت 10 MVA و بالاتر عملكرد نسبتا بهتري داشته و نسبت به ترانسفورماتورهاي معمولي قيمت پايينتري خواهند داشت .
تلاشهايي كه جهت توسعه ترانسفورماتورهاي ابررسانا انجام مي گيرد صرفاً بخاطر مسايل اقتصادي و كاهش هزينه كل نيست. يكي ديگر از دلايل طرح اين مبحث آنست كه در مراكز پر تراكم شهري، رشد مصرف 2 درصدي (ساليانه ) به معني نياز به ارتقاء ظرفيت سيستم هاي موجود است . از طرفي بسياري ازپستهاي توزيع بصورت سرپوشيده (Indoor) بوده و در كنار ساختمانها نصب شده اند. در اين نوع پست ها همانند ديگر پستهاي توزيع از ترانسهاي روغني استفاده ميشود كه استفاده از روغن مشكلات و خطرات زيست محيطي و ايمني مربوط به خود را دارد. در حاليكه در ترانسفورماتورهاي ابررسانا، ماده خنك كننده نيتروژن است كه خطري براي افراد و موجودات زنده نداشته ، بعلاوه ، خطر آتش سوزي نيز وجود ندارد. بهمين لحاظ خنك كننده مورد استفاده در ترانسفورماتورهاي ابررسانا به هيچ عنوان قابل مقايسه با روغنهاي قابل اشتعال و مواد شيميايي همچون PCB نيست.
توجه جدي به ترانسفورماتورهاي ابررسانا از زمان شناخت ابررساناهاي دماي پايين LTS ( اعم از Nb-Ti و Nb3-Sn ) از اوايل دهه 1960 ، آغاز شد. مطالعاتي كه در آن زمان بر روي اين ترانسفورماتورها انجام شد ، نشان داد كه جهت بهره برداري از اين ترانسفورماتورها، بايد آنها را در دماي 4 .2K نگه داشت كه انجام چنين كاري اقتصادي نيست . بهمين دليل گامها بسوي كشف موادي با قابليت ابررسانايي در دماهاي بالاتر ، برداشته شد. در اواسط دهه 1970 ، شركت Westing House ، طرح يك ترانسفورماتور نيروگاهي 550/22kv , 1000MVA را مورد مطالعهقرار داد و به اين نتيجه رسيد كه مشكلاتي از قبيل انتقال جريان ، عملكرد فوق جريان (Overcurrent) و حفاظت همچنان وجود خواهند داشت .

ریپورتر
29th March 2010, 10:52 AM
انواع ترانسفورماتورها (بر حسب شکل هسته و نحوه پیچیده شدن سیم پیچها)

1-ترانسفورماتور با هستةclose – core
این هسته ها به صورت یک مربع بسته ساخته شده اند که هر سیم پیچ جداگانه بر روی یک طرف هسته پیچیده می شود.
2-اتوترانسفورماتور:
هستة آنها به صورت میله ای بوده و معمولاً یک سیم پیچ برروی آنها پیچیده می شود. از این ترانسفورماتورها در مدار اشعه ایکس استفاده می شود.
3- ترانسفورماتور با هستة :
shell – type هسته این ترانسفورماتور به صورت دو حلقه چسبیده به هم می باشد و سیم پیچ های اولیه و ثانویه بر روی هم روی ستون وسط پیچیده می شوند. از این نوع نیز در مدارهای اشعه ایکس استفاده می شود.
- مدار ژنراتور اشعه ایکس از دو قسمت تشکیل شده است:
1-مدار ژنراتور اشعه ایکس.
2- تیوپ اشعه ایکس.
- مدار ژنراتور اشعه ایکس بر حسب مقدار ولتاژ عبوری دارای دو قسمت است:
1- مدار اولیه(Control console)
ولتاژ عبوری از مداراولیه در محدوده ولتاژهای معمولی یا فشار ضعیف است. پانل کنترل به عنوان قسمتی از مدار اولیه است.
2-مدار ثانویه(فشار قویHigh – Voltage)
ولتاژ در محدوده ولتاژهای فشار قوی می باشد. • مدار سادة ژنراتور اشعه ایکس:

o مدار اولیه: فشار ضعیف است و دارای ولتاژ حدود V240 تا 415 می باشد.
- اجزای مدار اولیه:
فیوزها، کلید اصلی، قطع کننده های مدار، اتوترانسفورماتور، جبران کنندة ولتاژ اصلی، کنترل kv، کلید کنتاکتور اولیه، اندازه گیر kv، سیم پیچ اولیه ترانسفورماتور فشارقوی، مدار زمان سنج، مدار گرم کنندة فیلامنت، مدارات جبران کننده.
o مدار ثانویه: فشار قوی است و ولتاژ بیشتر از kvp 75 دارد.
- اجزای مدار ثانویه:
سیم پیچ ثانویه ترانسفورماتور فشار قوی، یکسوکننده های فشارقوی، تیوپ اشعة ایکس، سیم پیچ ثانویه، ترانسفورماتور گرم کننده فیلامنت.
• اتو ترانسفورماتور:

از سیم ضخیمی که به صورت یک سیم پیچ به دور هستة آهنی پیچیده شده تشکیل شده است. تغییرات جریان متناوب در سیم پیچ 100 بار در ثانیه است و میدان مغناطیسی نیز به صورت انبساط و تراکم 100 بار در ثانیه تغییر می کند. در نتیجه ولتاژی به حلقة سیم پیچ و هستة آهنی القا می شود. با لایه لایه کردن هسته می توان از ایجاد جریان های گردابی جلوگیری کرد. با تراکم میدان، ولتاژی به هر حلقة سیم پیچ و در جهت عکس القا می شود.
ولتاژ اعمالی (ورودی)/ ولتاژ به دست آمده= (خروجی)
تعداد حلقه ها که در ولتاژ اعمالی وجود دارند/ تعداد حلقه هایی که ولتاژ خروجی از آنها گرفته ایم
• جبران کننده ولتاژ:

با ثابت نگه داشتن ولتاژ القایی به هر حلقة سیم پیچ اتوترانسفورماتور اثر تغییرات ولتاژ ورودی را جبران می کند. این عمل با تغییر تعداد حلقه هایی که به آنها ولتاژ اصلی القا شده، صورت می پذیرد. در جبران سازی اتوماتیک تغییرات ولتاژ باعث گردش چرخ دنده ای توسط یک میله محوری می شود تا حلقه های بیشتر یا کمتری از سیم پیچ به منبع برق وصل شود.
• کنترل kv:

با اعمال ولتاژ مناسب به سیم پیچ اولیه، از سیم پیچ ثانویه ترانسفورماتور فشار قوی، می توان هر kv دلخواهی را به دست آورد. این کار برای انتخاب ولتاژ مناسبِ حرکت کنترل چرخان که تعداد مناسبی از حلقه های اتوترانسفورماتور را در سیم پیچ اولیه انتخاب می کند، لازم است. مقدار kv مورد نظر بوسیله عقربه روی صفحه مدرج (scale) یا صفحة دیجیتالی نشان داده می شود.
• ترانسفورماتور فشار قوی:

از یک سیم پیچ اولیه و یک سیم پیچ ثانویه تشکیل شده است و وظیفة آن تأمین ولتاژهای بالا (تا kvp 150) برای تولید اشعة ایکس در تیوپ است. در اینجا میدان مغناطیسی از برقراری جریان در سیم پیچ اولیه به وجودآمده و توسط هستة فلزی متمرکز می شود.
• تنظیم ترانسفورماتور:

افت ولتاژی در ترانسفورماتور به وجود می آید که ناشی از تولید گرما در سیم پیچ ها و کاهش ولتاژ خروجی از سیم پیچ ثانویه یا ولتاژ دو سر تیوپ اشعه ایکس می باشد. اگر سیم پیچ ثانویه مدار باز و یا بی بار باشد افت ولتاژ نداریم. اما در حالت بار کامل افت ولتاژ حداکثر خواهد بود. تفاوت ولتاژ پیک ثانویه در شرایط بی باری و بار کامل تنظیم ذاتی ولتاژ نامیده می شود. وقتی جریان ولتاژ افزایش یابد باید ولتاژ اعمال شده به دو سر تیوپ اشعة ایکس کاهش یابد.
•ظرفیت ترانسفورماتور:

در واقع ظرفیت حداکثر، کیلوولت-آمپری (KVA) است که به طور ایمن از سیم پیچ ثانویه می توان گرفت. مثلاً در فلوروسکوپی از جریان کم با ولتاژ بالا استفاده می شود، ولی در پرتونگاری تشخیصی در مدت بسیار کوتاه از جریان زیاد با ولتاژ بالا استفاده می شود.
- مواردی که ظرفیت ترانسفورماتور فشار قوی در دستگاه های رادیوگرافی تشخیصی دربر می گیرد:
1-حداکثر ولتاژی (kvp) که ترانسفورماتور می تواند با ایمنی کامل در شرایط بی بار تحویل دهد.
2-حداکثر جریانی که بیش از یک ثانیه در زمان سرد بودن می تواند عبور دهد که به نام بار لحظه ای یا منقطع نامیده می شود و در اکسپوژرهای تشخیصی به کار می رود.
3-حداکثر جریان ایمنی که بی وقفه می تواند جریان یابد و به نام بار پیوسته موسوم است که در فلوروسکوپی یا رادیوتراپی استفاده می شود.
4-تنظیم ذاتی ولتاژ وقتی حداکثر جریان با بار(loading) ناپیوسته برقرار می شود. این حد نباید از 15% حداکثر kvp در شرایط بی بار بیشتر باشد.
5-تنظیم ذاتی ولتاژ در حداکثر بار پیوسته که مقدار آن نباید از 5% حداکثر kvp در شرایط بی بار بیشتر باشد.
6-درصد مجاز بار اضافی(over load).
7-اطلاعات تکنیکی بیشتر در خصوص علایق بندی، حداکثر افزایش مجاز درجه حرارت در شرایط معین و غیره.
•جبران افت ولتاژ در کابل تغذیه کننده:

بدیهی است تمام انرژیی که در مدار ثانویه استفاده می¬شود، بایستی توسط مدار اولیه تأمین شود. در مدار ایده¬آل که افت انرژی وجود ندارد، توان ثانویه درست برابر توان اولیه است نه بیش از آن. زمانی که توان ثانویه با افزودن kv و یا mA افزایش می یابد، می بایست جریان مدار اولیه نیز افزایش یابد. این کار موجب افزایش افت توان (به صورت گرما) در کابل های تغذیه کننده می شود. مقاومت کابل تأمین کننده نباید از مقدار مشخصی بیشتر باشد. افت ولتاژ در کابل برابر حاصل ضرب شدت جریان در مقاومت R( × )I می باشد. زمانی که لازم است توان ثانویه افزایش یابد، بایستی مقدار جریان اولیه نیز افزایش یابد. مقدار مقاومت Z و نسبت سیم پیچ های x و y عواملی هستند که به طور اتوماتیک اتلاف توان در کابل ها را جبران کرده و توان صحیح در اولیه و در نتیجه ثانویه ثابت نگه داشته می شوند.
• مدارات فشار قوی تشخیصی:

- مدار خود یکسوکننده (یک پالسی)
یکی از اجزاء مدار ثانویه است. چنین مداری اغلب با تیوب اشعه ایکس با آند ثابت استفاده می شود که این تیوپ به عنوان یکسوکننده نیز عمل می کند.
- تیوپ اشعه ایکس با آند ساکن:
در بعضی دستگاه های متحرک، اغلب دستگاه های دندانی و دستگاه های پرتابل استفاده می شود. این تیوپ از حباب شیشه ای که محتوی کاتد و آند است و محفظه ای فلزی مملو از روغن که تیوپ در آن است تشکیل شده.
تیوپ شیشه ای:

حباب خلاء شیشه ای است که از شیشة مخصوص و محکم ساخته شده است و شامل: 1- فیلامنت سیمی (از جنس تنگستن)، 2- متمرکزکننده از جنس مولیبدنیوم یا فولاد، 3- آند مسی که روی آن هدفی از جنس تنگستن است، می باشد.
محفظة تیوپ:

از جنس فولاد بوده که مملو از روغن است و حباب شیشه ای را دربرمی گیرد. این محفظه محلی برای اتصال کابل های فشار قوی داشته و دارای پایه ای است که تیوپ را نگه می دارد.
تمام پرتوهایی که از هدف منتشر می شوند به جز پرتوی که از طریق پنجره رادیولوسنت خارج می شود، توسط لایه سربی که به صورت آستری محفظة تیوپ را پوشانیده، به شدت جذب می شوند. روغن داخل محفظه گرم و منبسط می شود. داخل محفظه وسیله ای بادکنکی است که فضای اضافی بوجود می آورد تا در زمان انبساط فضای لازم را ایجاد کند. وظیفة روغن ایجاد عایق الکتریکی و نیز انتقال گرما از آند به محفظه است. برای انتقال جریان از ترانسفورماتور فشار قوی به تیوپ اشعه ایکس از کابل های فشار قوی استفاده می شود. در این دستگاه تیوپ اشعه ایکس ضمن تولید اشعه ایکس به عنوان یکسوکننده نیز عمل می کند. مزیت این دستگاه نسبت به دستگاه های مجهز به یکسو کننده تمام موج عبارت است از سادگی، کوچکی، قابلیت مانور، ارزان بودن و... و عیب آن محدودیت در درجة حرارت است.
گرمای ایجاد شده در هدف تیوپ اشعه ایکس بر حسب واحد گرمایی ( H.V) به این صورت محاسبه می شود:
(زمان بر حسب ثانیه) T × (میانگین) mA × KVp = واحد گرمایی در ثانیه
در استفاده از دستگاه خود یکسوکننده، زمان اکسپوژر طولانی تر و مقدار mA کمتر خواهد بود. عیب دیگر این دستگاه پائین بودن کارآیی تیوپ و ضرورت افزایش عایق بندی است که این مشکلات توسط کاهنده ولتاژ معکوس کاهش می یابد.
- کاهنده ولتاژ معکوس:

بوسیله کاهنده ولتاژ معکوس، ولتاژ معکوس ثانویه را تقریباً به اندازه ولتاژ مثبت می توان کاهش داد. اجزای این وسیله عبارتند از لامپ دیود گازی (یا دیود خشک) و یک مقاومت درست شده که به طور سری به مدار اولیه وصل می شود.
- یکسوکننده تمام موج(دو پالس)

با استفاده مناسب از یکسوکننده ها در مدار ثانویه، جریان طی نیم سیکل در همان جهت نیم سیکل مثبت، از تیوپ اشعه ایکس می گذرد. بدین خاطر می توان گفت همیشه هدف تیوپ اشعه ایکس مثبت و فیلامنت همیشه منفی خواهد بود. در هر لحظه فقط دو یکسوکننده در مدار قرار می¬گیرد و در هر نیم سیکل جریان نقطه دریک جهت از تیوپ اشعه ایکس عبور می کند.
- مدار پتانسیل ثابت تک فاز جهت switching ثانویه:

اجزای این مدار علاوه بر مدار قرارداری چهار لامپی(valve)، شامل دو خازن و دو لامپ خلاء تریود فشار قوی می باشد. لامپ تریود همان طوری که از نامش پیداست حباب شیشه ای خلاء است که شامل سه الکترود یعنی یک آند، یک کاتد و یک شبکه (grid) می باشد.
آماده سازی اکسپوژر:

با فشار دکمة آماده سازی اکسپوژر فیلامنت های تیوپ اشعه ایکس و لامپ ها (valve) گرم شوند. آند شروع به چرخش می کند و کنتاکتور مدار اولیه برای بر قراری انرژی به ترانسفورماتور فشار قوی بسته می شود.
تولید اکسپوژر:

با فشار کامل دکمه، اکسپوژر آغاز می شود. ولتاژ مثبت به گرید لامپ های تریود اعمال شده و بار منفی گرید خنثی میگردد. سپس جریان از لامپ ها و تیوپ اشعه ایکس عبور می کند. اعمال ولتاژ مثبت پس از زمان مشخص شده با تایمر متوقف گشته و با دادن ولتاژ منفی به گریدها، عبور جریان متوقف می شود.
طرز کار مدار ثانویه:

در لحظه شروع اکسپوژر مقدار ولتاژ یکسوشده ترانسفورماتور صفر است. زیرا خازنها هنوز تخلیه نشده اند. درنتیجه تخلیه آنها توسط لامپهای تریود و تیوپ شروع می شود و ضمن تخلیه، ولتاژ آنها کاسته شده و کم کم با ولتاژ یکسوشده ترانسفورماتور فشار قوی برابر می گردد. ولتاژ ترانسفورماتور فشار قوی تا مقدار پیک افزایش یافته سپس خازنها مجدداً شارژ می شوند. ولتاژ خروجی ترانسفورماتور که شروع به کاهش می کند خازنها تخلیه شان شروع می شود و باز ولتاژها برابر می شوند سپس ولتاژ ترانسفورماتور خود به حداکثر رسیده و خازنها تخلیه می شوند و سپس با اعمال مجدد بار منفی به گرید لامپها، اکسپوژر خاتمه می یابد. در پایان ولتاژ خروجی ترانسفورماتور صفر است و خازنها تا حدی تخلیه شده اند.
کنترل kv (با استفاده از تریودهای فشارقوی):

اختلاف پتانسیل (kv) دو سر تیوپ اشعه ایکس را با تغییر ولتاژ اعمالی به گرید لامپهای تریودی می توان تنظیم کرد. لامپ تریودی را که دارای امپدانس است درنظر می گیریم که مقدارش با بار گرید تغییر می کند. در عمل از اتوترانسفورماتوری استفاده می شود که بتواند کیلوولتاژی بیشتر از حد لازم تولیدکند. پس برای کاهش ولتاژ از لامپ تریودی استفاده می شود.
- مدار سه فاز شش پالس (با شش یکسوکننده):

ژنراتورهای تک فاز به سیم فاز خنثی کننده یا دو سیم فاز برق شهر وصل می شوند ولی ژنراتور سه فاز به سه سیم فاز وصل می شود.
مدار اولیه شامل سه اتوترانسفورماتور، سه سر متصل کننده (کنتاکتور) اولیه، سه سیم پیچ اولیه ترنسفورماتور فشار قوی و... می باشد. طرز کار مدار به صورت زیر است:
جریان فقط در یک جهت از تیوپ اشعه ایکس عبور می کند. جریان از یک یکسوکننده عبورکرده و از یک یکسوکننده دیگر باز می گردد و همیشه جهت جریان در تیوپ از فیلامنت به آند است. نحوه کار مشابه مدار پتانسیل چهار لامپی است، اما منبع برق قوی تری دارد. از تیوپ اشعه ایکس مجهز به کنترل گرید هم به عنوان مولد اشعه ایکس و هم به عنوان سوئیچ ثانویه مدار استفاده می شود که این نوع تیوپ تکرار اکسپوژرهای سریع را که برای سینه فلورگرافی ضروری است تأمین می کند.
سیستم های خنک کنندگی در ترانسفورماتور

سیستمONAN (روغن طبیعی – هوا طبیعی)
در این سیستم ، هوا به طور طبیعی با سطح خارجی رادیاتورهای در تماس است و رادیاتورها به طور طبیعی با هوا خنک می شوند . همچنین گردش روغن در ترانسفورماتور نیز به طور طبیعی صورت می گیرد ؛ یعنی روغن گرم بالا می رود و روغن سرد ، جای آن را می گیرد .این نوع سیستم خنک کنندگی مختص ترانسفورماتورهای با قدرت کم است ؛ زیرا با افزایش قدرت ترانسفورماتور ، حرارت سیم پیچ ها زیاد می شود و روغن باید با سرعت بیشتری در تماس با هوای بیرون قرار گیرد و عمل خنک کنندگی با سرعت بیشتری انجام شود . از این نوع سیستم برای ترانسفورماتورهای قدرت تا MVA 30 مورد استفاده قرار می گیرد .
سیستم ONAF (روغن طبیعی – هوا اجباری)
در این سیتم ، گردش روغن در داخل ترانسفورماتور به طور طبیعی صورت می گیرد ؛ ولی فن های نصب شده روی بدنه رادیاتورها ، سرعت تماس هوای خارج با بدنه رادیاتور را افزایش می دهد . لذا روغن سریعتر خنک می شود و طبعاً می توان توان ترانسفورماتور را بالا برد . دمیدن هوا توسط فن ها می تواند به طور مداوم یا با فاصله تناوبی انجام شود ؛ بدین صورت که عملکرد فن می تواند تابعی از درجه حرارت روغن داخل ترانسفورماتور باشد و هنگامی که دمای روغن از حد معینی افزایش یافت ، فن ها به طور خودکار وارد مدار می شوند . البته هنگامی که درجه حرارت محیط خیلی بالا باشد ، ترانسفورماتور می تواند بدون سیستم فن و با خنک شدن طبیعی ، تقریباً تا دو سوم توان نامی خود کار کند و در صورتی که بخواهیم با توان نامی کار کند ، باید فن ها شروع به کار کنند . این نوع سیستم خنک کنندگی به طور وسیعی در ترانسفورماتورهای قدرت با توان بین 30 تا 60 مگا ولت آمپر مورد استفاده قرار می گیرد .

http://www.rasekhoon.net/_WebsiteData/Article/ArticleImages/1/1388/ordibehesht/09/250429%20%281%29.jpg
http://www.rasekhoon.net/_WebsiteData/Article/ArticleImages/1/1388/ordibehesht/09/250429%20%282%29.jpg
سیستمONAN (روغن طبیعی – هوا طبیعی):

در این سیستم ، هوا به طور طبیعی با سطح خارجی رادیاتورهای در تماس است و رادیاتورها به طور طبیعی با هوا خنک می شوند . همچنین گردش روغن در ترانسفورماتور نیز به طور طبیعی صورت می گیرد ؛ یعنی روغن گرم بالا می رود و روغن سرد ، جای آن را می گیرد .این نوع سیستم خنک کنندگی مختص ترانسفورماتورهای با قدرت کم است ؛ زیرا با افزایش قدرت ترانسفورماتور ، حرارت سیم پیچ ها زیاد می شود و روغن باید با سرعت بیشتری در تماس با هوای بیرون قرار گیرد و عمل خنک کنندگی با سرعت بیشتری انجام شود . از این نوع سیستم برای ترانسفورماتورهای قدرت تا MVA 30 مورد استفاده قرار می گیرد .
سیستم ONAF (روغن طبیعی – هوا اجباری) :

در این سیتم ، گردش روغن در داخل ترانسفورماتور به طور طبیعی صورت می گیرد ؛ ولی فن های نصب شده روی بدنه رادیاتورها ، سرعت تماس هوای خارج با بدنه رادیاتور را افزایش می دهد . لذا روغن سریعتر خنک می شود و طبعاً می توان توان ترانسفورماتور را بالا برد .
دمیدن هوا توسط فن ها می تواند به طور مداوم یا با فاصله تناوبی انجام شود ؛ بدین صورت که عملکرد فن می تواند تابعی از درجه حرارت روغن داخل ترانسفورماتور باشد و هنگامی که دمای روغن از حد معینی افزایش یافت ، فن ها به طور خودکار وارد مدار می شوند . البته هنگامی که درجه حرارت محیط خیلی بالا باشد ، ترانسفورماتور می تواند بدون سیستم فن و با خنک شدن طبیعی ، تقریباً تا دو سوم توان نامی خود کار کند و در صورتی که بخواهیم با توان نامی کار کند ، باید فن ها شروع به کار کنند
این نوع سیستم خنک کنندگی به طور وسیعی در ترانسفورماتورهای قدرت با توان بین 30 تا 60 مگا ولت آمپر مورد استفاده قرار می گیرد .
سیستم OFAF0(روغن اجباری – هوا اجباری) :

در این سیستم ، گردش روغن در داخل ترانسفورماتور به کمک فن ، سرعت داده می شود تا انتقال حرارت با سرعت بیشتری انجام گیرد . فن های هوا نیز بدنه رادیاتورها را در تماس بیشتری با هوا قرار می دهند تا روغن را سریعتر خنک کنند . در این سیستم با توجه به سرعت بسیار بالای خنک کنندگی سیم پیچ ها ، می توان قدرت نامی ترانسفورماتور را به مقدار قابل توجهی افزایش داد . لازم به ذکر است که عموماً از این نوع سیستم خنک کنندگی در ترانسفورماتورهای با توان بیش از MVA 60 استفاده می شود
سیستم OFWF (روغن اجباری – آب اجباری) :

در این سیستم ، ابتدا روغن توسط پمپ از بالای ترانسفورماتور وارد رادیاتور می شود تا پس از عبور از آن ، از پایین رادیاتور وارد ترانسفورماتور گردد . در رادیاتور ، آب خنک کنندگی هم در توسط پمپ در خلاف مسیر روغن در رادیاتور عبور می کند که باعث کاهش دمای روغن می شود . از این نوع سیستم در ترانسفورماتورهای با توان بیش از MVA 60 مورد استفاده قرار می گیرد .
سیستم ODWF (روغن اجباری در سیم پیچ و هسته – آب اجباری) :

در ترانسفورماتورهای با قدرت های بسیار بالا ، به منظور کاهش هرچه بیشتر دمای سیم پیچ ها و هسته باید روغن را توسط پمپ ها ، با فشار و جهت مناسب از قسمت تحتانی تانک ترانسفورماتور به داخل سیم پیچ ها و هسته هدایت نمود . همچنین مشابه روش قبل ، با استفاده از رادیاتور و چرخش روغن در داخل آن و به واسطه تماس غیر مستقیم با آب خنک کنندگی ، دمای روغن به مقدار مورد نظر کاهش می یابد .
• مزایای مدار سه فاز نسبت به مدار تک فاز در زمان اکسپوژر معین:

1-اشعه ایکس بیشتر
2-اشعه ایکس با متوسط طول موج کوتاه تر
• مزایای رادیوگرافیکِ ژنراتورهای اشعه ایکس سه فاز نسبت به تک فاز:

1-تولید پرتو نرم کمتر و کاهش دوز پوست بیمار.
2-تولید اشعه ایکس بیشتردر mA و kvp مشابه.
3-کاهش زمان اکسپوژر.
4-به¬دست آمدن ظرفیت تیوب (tube rating) در زمان اکسپوژر کوتاه.
5-افزایش عمر تیوپ اشعه ایکس به دلیل تحمل حرارتی آن.
- مدار 12 پالس (با 12 یکسوکننده):
با وجود آنکه ولتاژ موجی شکل حاصل از مدار سه فاز در مقایسه با تک فاز نوسان کمتری دارد، در مدار 12 پالس نوسان کمتر است و ولتاژ همواره مقدار ثابتی دارد.
- مدار گرم کننده فیلامنت تیوب اشعه ایکس:

ولتاژ این مدار با انتخاب تعداد مناسب حلقه های اتوترانسفورماتور به دست می آید. نوسان های طولانی مدت توسط جبران کننده، جبران می شود. ولی برای جبران نوسان های لحظه ای از ثابت کننده های استاتیک یا ثابت کننده الکترونیک استفاده می شود.
ثابت کننده استاتیک:

فاقد قسمت متحرک است. از یک ترانسفورماتور و یک خازن تشکیل شده که اتصال آنها به گونه ای است که اثرات القایی و خازنی در یک فرکانس معین، ولتاژ خروجی ثابتی خواهد بود.
ثابت کننده الکترونیکی:

از ترانسداکتور استفاده می شود. (ترانسداکتور، القاکننده ای است که امپدانس آن توسط سیم پیچ جداگانه d.c تغییر پیدا می کند)
- جبران کننده بار الکتریکی فضایی:

اثرات بار الکتریکی فضایی را جبران می کند.
* بار الکتریکی فضایی: تجمع الکترون ها در اطراف فیلامنت و مقدار آن زمانی که به دو سرتیوب کیلوولتی اعمال نشود حداکثر است. درصورتی که ولتاژ آند بسیار کمتر از آن باشد که جریان اشباع تولیدکند، الکترون ها در اطراف فیلامنت باقی می ماند.
برای بازگرداندن جریان به مقدار اولیه اش (که توسط بار فضایی کاهش یافته) می توان جریان گرمایی فیلامنت را افزایش داد. تغییر جریان فیلامنت بوسیله جبران کننده بار فضایی بوجود می آید.
- کنترل میلی آمپر:

از تعدادی مقاومت تشکیل شده که به دلخواه می توان به هر کدام ولتاژ فیلامنت تیوپ را اعمال و mA مورد نظر را تولید کرد.
- مقاومت متغیر یا تریمر (Trimmer resistance): مقاومت متغیری است که برای تغییر مقادیر mA به کار می رود. هرگاه تمام مقادیر میلی آمپر از مقدار مورد نظر کمتر باشد، می توان مقاومت تریمر را کاهش داد تا مقادیر mAs به مقدار اولیه شان بازگردد.
- ترانسفورماتور کاهنده فیلامنت:

شامل دو سیم پیچ اولیه و دو ثانویه می باشد یکی برای فوکوس بزرگ و یکی برای فوکوس کوچک می باشد. ولتاژ تغذیه کننده فیلامنت را می توان به هر دو سیم پیچ اولیه اعمال کرد. تنظیم سوئیچینگ مدار به نحوی است که در یک زمان فقط می توان به یک سیم پیچ اولیه انرژی داد.
- سوئیچینگ اکسپوژر (مدار اولیه)

با فشار دکمه اکسپوژر، مدار تایمر فعال می شود که سیم پیچ آهنربایی را فعال کرده و موجب بسته شدن کلید مدار اولیه می شود. جریانی که در این حال از مدارات اولیه و ثانویه می گذرد در هدف تیوپ،‌ اشعه ایکس تولید می کند. در انتهای مدت زمانی که توسط مدار تایمر تعیین می گردد انرژی سولنویید آهن ربا قطع شده و کلید مدار اولیه باز می شود و اکسپوژر خاتمه می یابد. سوئیچ مدار اولیه ممکن است مکانیکی (الکترومغناطیسی) و یا الکترونیکی باشد.
سوئیچ کنتاکتور مکانیکی (الکترومغناطیسی)

1-اجزای ثابت شامل:
الف– سولنوئید که سیم پیچی آن با مدار تایمر به صورت موازی است.
ب– هسته که هنگام عبور جریان از سولنویید مغناطیسی می شود.
ج– تعدادی اتصالات مسی.
2-اجزای متحرک شامل:
الف– اتصالات مسی.
ب– قطعه مغزی بزرگ که در هنگام عبور جریان از سولنویید به سمت هسته آن کشیده می شود.
• ترانسفورماتورهای سه فاز:

برای اینکه بتوانیم ولتاژ تقریباً c 1 در تیوب اشعه ایکس تولید کنیم از ژنراتورهای ولتاژ بالای سه فاز استفاده می کنیم که سه سیم پیچ در طرف اولیه و سه سیم پیچ در طرف ثانویه خود به صورت ستاره یا مثلث دارند، که با توجه به نحوه سیم بندی به سه نوع زیر تقسیم بندی می شود:
الف) شش پالس، شش یکسوکننده.
ب) شش پالس، دوازده یکسوکننده.
ج) دوازده پالس
ژنراتور با ولتاژ بالا

شركت ABB اخيرا ژنراتوري با ولتاژ بالا ابداع كرده است . اين ژنراتور بدون نياز به ترانسفورماتور افزاينده بطور مستقيم به شبكه قدرت متصل مي گردد . ايده جديد بكار گرفته شده در اين طرح استفاده از كابل به عنوان سيم پيچ استاتور مي باشد . ژنراتور ولتاژ بالا براي هر كاربرد در نيروگاههاي حرارتي و آبي مناسب مي باشد . راندمان بالا ، كاهش هزينه هاي تعمير و نگهداري ، تلفات كمتر ، تأثيرات منفي كمتر بر محيط زيست ( با توجه به مواد بكار رفته ) از مزاياي اين نوع ژنراتور مي باشد . ژنراتور ولتاژ بالا در مقايسه با ژنراتورهاي معمولي در ولتاژ بالا و جريان پائين كار مي كند . ماكزيمم ولتاژ خروجي اين ژنراتور با تكنولوژي كابل محدود مي گردد كه در حال حاضر با توجه به تكنولوژي بالاي ساخت كابلها ميتوان ولتاژ آنرا تا سطح 400 كيلو ولت طراحي نمود . هادي استفاده شده در ژنراتور ولتاژ بالا بصورت دوار مي باشد در حاليكه در ژنراتورهاي معمولي اين هادي بصورت مثلثي مي باشد در نتيجه ميدان الكتريكي در ژنراتورهاي ولتاژ بالا يكنواخت تر مي باشد . ابعاد سيم پيچ بر اساس ولتاژ سيستم و ماكزيمم قدرت ژنراتور تعيين مي گردد . در ژنراتورهاي ولتاژ بالا لايه خارجي كابل در تمام طول كابل زمين مي گردد ، اين امر موجب مي شود كه ميدان الكتريكي در طول كابل محدود گردد و ديگر مانند ژنراتورهاي معمولي نياز به كنترل ميدان در ناحيه انتهايي سيم پيچ نباشد .
جزيي ( Partialdischarge) در هيچ ناحيه اي از سيم پيچ وجود ندارد و همچنين ايمني افراد بهره بردار و يا تعميركار افزايش مي يابد . سربنديها و اتصالات معمولا در فضاي خالي مورد دسترس در محل انجام مي گيرد ، بنابراين محل اين اتصالات در يك نيروگاه نسبت به نيروگاه ديگر متفاوت مي باشد ، اما در هر حال اين اتصالات در خارج از هسته استاتور مي باشد ، براي مثال اتصالات و سربنديها ممكن است زير ژنراتور و يا خارج از قاب استاتور ( Statorframe ) انجام گيرد . بدين ترتيب اتصالات و سربنديها ، مشكلات ناشي از ارتعاشات و لرزش هاي بوجود آمده در ماشين هاي معمولي را نخواهند داشت .
در طرح كنوني ژنراتور ولتاژ بالا دو نوع سيستم خنك كنندگي وجود دارد ، روتور و سيم پيچ هاي انتهايي توسط هوا خنك مي گردند در حاليكه استاتور توسط آب خنك مي گردد . سيستم خنك كنندگي آب شامل لوله هاي XLPE قرار گرفته شده در هسته استاتور مي باشد كه آب از اين لوله ها جريان مي يابد و هسته استاتور را خنك نگه مي دارد .
مقايسه جريان اتصال كوتاه در نيروگاه مجهز به ژنراتور ولتاژ بالا با نيروگاه مجهز به ژنراتور معمولي نشان مي دهد كه به دليل اينكه در نيروگاه با ژنراتور ولتاژ بالا راكتانس ترانسفورماتور حذف مي گردد جريانهاي خطا كوچكتر مي باشد

ریپورتر
29th March 2010, 10:54 AM
ژنراتورها وموتورهاي الكتريكي

ژنراتورها و موتورهاي الكتريكي گروه از وسايل استفاده شده جهت تبديل انرژي مكانيكي به انرژي الكتريكي يا برعكس . توسط وسايل الكترومغناطيس هستند . يك ماشيني كه انرژي الكتريكي به مكانيكي تبديل مي كند موتورنام دارد.و ماشيني كه انرژي مكانيكي را به انرژي الكتريكي تبديل مي كند ژنراتور يا آلترناتور يامتناوب كننده يا دينام ناميده مي شود .
دو اصل فيزيكي مرتبط با عملكردموتورهاوژنراتور ها وجود دارد. اولين اصل فيزيكي اصل القايي الكترومغناطيسي كشف شده توسط مايكل فارادي دانشمند بريتانيايي است. اگر يك هادي در ميان يك ميدان مغناطيسي حركت كند يا اگر طول يك حلقه ي القايي ساكني جهت تغيير استفاده شود. يك جريان ايجاد مي شود يا القا مي شود در كنتاكنتور بحث اين اصل اين است كه در مورد واكنش الكترومغناطيسي بحث مي كند و اين كه اين واكنش در ابتدا توسط آندر مري آمپر در سال 1820 كه دانشمند فرانسوي است كشف شد.اگر يك جريان از ميان يك كنتاكتور كه در ميدان مغناطيسي قرار گرفتند عبور كند . ميدان نيروي مكانيكي بر آن وارد مي كند .
ساده ترين ماشيني هاي ديناموالكتريك ديسك ديناميكي است كه توسعه يافته توسط افرادي است كه آن شامل يك صفحه ي مسي پيچيده شده است. كه اين پيچش از مركز تالبه وجود دارد .و بين قطبهاي يك آهنرباي سمبر اسبي است .
وقتي ديسك مي چرخد يك جريان بين مركز ديسك ولبه ي آن توسط عملكرد ميدان آهنربا القا مي شود كه ديسك يا صفحه ميتواند ساخته شود. جهت عمل كردن به عنوان يك موتور توسط بكار بردن يك ولتاژ بين لبه ي ديسك و مركزش كه اين به علت چرخش ديسك به دنده بدليل نيروي توليد شده توسط واكنش مغناطيس است . ميدان مغناطيسي آهن رباي دائم به اندازه ي كافي براي كار كردن كافي است . كه حتي به عنوان يك موتور يا دينام كوچك بكار مي رود ( كار مي كند). در نتيجه براي ماشين هاي بزرگتر آهنرباي بزرگتري بكار مي رود. هم موتور ها وهم ژنراتورها داراي دو اصل هستند : قسمتها وميدان كه آهنرباي الكترومغناطيسي با سيم پيچ هايش و آرميچر و ساختاري كه از كنتاكتور حمايت مي كند و كار قطع ميدان مغناطيسي وحمل جريان القا شده ژنراتور يا جريان ناگهاني به موتور را دارد است. آرميچر معموﻸ هسته ي نرم آهني اطراف سيم هاي القايي كه دور سيم پيچ ها پيچيده شده اند است.
موتور هاي AC:

دو نوع اساسي موتور ها طراحي شده اند براي عمل كردن بر روي جريان متناوب پولي فاز موتور هاي سنكرون و موتور هاي القايي موتور هاي سنكرون اساسآ يك تناوب گر(آلترناتور) سه فاز است كه بصورت معكوس كار مي كند. آهنربا هاي ميدان روي رتور پيچيده شده اند توسط جريان مستقيم تحريك شده اند و سيم پيچ آرميچر به سه قسمت تقسيم مي شود و با جريان متناوب سه فاز تغذيه مي شوند . تغيير موج هاي سه فاز جرياندر آرميچر واكنش متغيير مغناطيس را با قطبهاي آهنربا هاي ميدان سبب مي شوند. و چرخش ميدان با يك سرعت ثابت كه اي سرعت ثابت توسط فركانس جريان در خط قدرت AC تعيين مي شود را سبب مي گردند سرعت موتور سنكرون در وسايل خاصي سودمند است. همچنين در كاربدهايي كه بار مكانيكي روي موتور خيلي زياد مي شود و نيز موتور هاي سنكرون نمي توانند استفاده شوند. بخاطر اينكه اگر موتور سرعتش كاسته شود تحت بار آن يك مرحله عقب مي ماند . در واقع يك پله كاسته مي شود با فركانس جريان و منجر به توقف موتور مي شود موتور هاي سنكرون مي توانند ساخته شوند براي عملكرد از يك منبع قدرت تك فاز توسط با شاكل شدن عناصر مدار مناسب كه يك ميدان مغناطيسي چرخش را سبب مي شود ساده ترين موتور هاي الكتريكي نوع قفس سنجابي موتور هاي القايي استفاده شده بايد يك تغذيه سه فاز مي باشد استاتور يا ارميچر ساكن از موتور قفس سنجابي شامل سه سيم پيچ ثابت مشابه با آرميچر موتور سنكرون مي باشد عصر چرخشي متشكل از يك هسته: در قسمتي كه يك سري از كنتاكتور ها سنگين نظم داده ومنظم شده اند وقرار گرفته اند بصورت يك دايره در اطراف شافت (ميله) و موازي با آن برداشتني هستند كنتاكتور هاي روتور به شكل قفسه اي استوانه اي و مشابه به ان استفاده مي شوند بصورت سنجابي (كار مي كنند) جريان سه فاز در سيم پيچ هاي استاتور جاري مي شوند و يك ميدان مغناطيسي چرخشي توليد مي كند. اين ميدان يك جريان در كنتاكتور هاي نوع قفسه اي القا مي كند . واكنش مغناطيسي بين ميدان چرخشي و كنتاكتور هاي حامل جريان روتور روتور را به حركت در مي اورند. اگر روتور دقيقآ با سرعت يكساني به مانند ميدان مغناطيسي بچرخد هيچ جرياني در آن القا نخواهد شد. و از اين رو روتور با سرعت سنكرون نبايد به حركت درايد. در عمل سرعتهاي چرخش روتور و ميدان در حدود 2 تا 5 درصد با هم تفاوت دارند. اين تفا وت سرعت بعنوان لغزش معروف است. متور ها با روتور هاي قفس سنجابي مي توانند استفاده شوند روي جريان متناوب تكفاز بوسيله نظم هاي مختلفي از القا و ظرفيت و بر اساس اين دو مورد كه ولتاژ تكفاز را اصلاح مي كند و تغيير مي دهد و آن را به ولتاژ فاز تبديل مي كند چنين موتور هايي بعنوان موتور هاي فاز شكاف (Spelat Phase) مشخص و معروفند يا موتور هاي تعديل كننده يا كند از سر(متور هاي خازني) بر اساس نظم و ترتيب آن ها استفاده مي شوند.
موتور هاي قفس سنجابي تكفاز گشتاور شروع(راه اندازي) زيادي ندارند. و براي به كار انداختن در حالي كه گشتاور زياد است موتور هاي خنثي القايي استفاده مي شود . يك موتور خنثي القايي ممكن است از نوع فاز شكاف باشد. يا از نوع تعديل كننده اما يك سوئيچ يا اتو ماتيك يا دستي دارد كه اجازه مي دهد جريان بين جاروبك هاي كموتاتور وقتي موتور شروع به حركت مي كند. جاري شود و اتصالات كوتاه همه اجزاي كموتاتور بعد از اينكه موتور به يك سرعت تقسيم مي شوند . موتور هاي دفع القايي يا خنثي القايي به اي خاطر ناميده شده اند . كه گشتاور راه اندازيشان وابسته است به دفع بين روتور و استاتور و گشتاورشان در زمان راه اندازي وابسته است به القا موتورهاي سيم پيچي شده ي سري با كموتاتور ها كه بر روي جريان متناوب با جريان مستقيم عمل مي كنند. موتور هاي يونيورسال ناميده مي شوند. آن ها معمولآ فقط در اندازه هاي كوچك ساخته مي شوند و معمولآ در مصارف خانگي كاربرد دارند.
آلتر ناتور هاي جريان متناوب(AC)(آلتر ناتور ها) ژنراتوها:

همانتور كه در بالا گفته شد يك ژنراتور ساده بدون كموتاتور توليد خواهد كرد كه يك جريان الكتريكي كه متناوب مي شوند.در مسير همانطور كه آرميچر مي چرخد چنين جريان متناوبي مزيت زيادي دارد . براي اتقال توان الكتريكي و از اين رو بشترين ژنراتور هاي اللتريكي بزرگ از نوع AC هستند.در ساده ترين شكلش يك ژنراتور AC فقط در دو حالت خاص فرق مي كند با ژنراتور DC پايانه هاي سيم پيچ آرميچرش بيرون هستند. براي حلقه هاي لغزان جزئي شده جامد روي شافت(ميله)ژنراتو بجاي كموتاتور و سيم پيچ هاي ميذان توسط يك منبع DC خارجي تغذيه انرژي مي شوند. تا اينكه توسط خود ژنراتور اين كار انجام مي شود. ژنراتور هاي AC سرعت پاييني با تعداد زيادي در حدود 100 قطب ساخته مي شوند. هم براي بهبود بازده شان و هم براي دست يافتن به فركانس دلخواه به آساني. آلترناتور ها با توربين هاي سرعت بالا راه اندازي مي شوند. همچنين اغلب ماشين هاي دو قطبي هستند. فركانس جريان گرفته شده توسط ژنراتو AC مساوي است با نيمي از تعداد قطبها و تعداد چرخش آرميچر در هر ثانيه. اغلب مطلوب است در مورد ژنراتور كه واتژ بالايي وجود داشته باشد و آرميچر هاي در حال چرخش در چنين كاربرد هايي صرف عمل نمي كنند. بخاطر احتمال جرقه زني بين جاروبكها و حلقه هاي لغزان و خطر شكستهاي مكانيكي كه ممكن است سبب اتصال كوتاه شود . آلترناتور ها بنا بر اين با يك سيم پيچ ساكن كه بدور يك روتور مي چرخد . و اين روتور شامل تعدادي اهنرباي مغناطيسي ميدان هستندساخته مي شوند اصل عملكرد آنها دقيقآ مشابه عملكرد ژنراتور هاي AC توصيف شده اند. بجز اينكه ميدان مغناطيسي(نسبت به كنتاكتور هاي آرميچر) به حركت در مي ايند. جريان توليد شده توسط آلترناتور هاي توصيف شده در بالا به يك پيك مي رسد و به صفر ختم مي شوند و به يك پيك منفي افت مي كنند. و دوباره به سمت صفر مي آيند. و در چند زمان در واقع چندين بار در هر ثانيه بسته به فركانس كه ماشين طراحي شده چنين جريان را جريان متناوب تكفاز ناميده اند. همچنين اگر آرميچر در داخل دو سيم پيچ قرار گيرد. كه اين سيم پيچ ها از زاويه ها و گوشه هاي راست يكديگر كشيده شده اند و با اتصالات خارجي مجزا تهيه شده اند. دو موج جريان توليد خواهد شد. هر كدام در ماكزيممش خواهد بود وقتي كه ديگري به صفر برسد .چنين جرياني را جريان متناوب سه فاز ناميده اند. اگر سه سيم پيچ ارميچر با زواياي 120درجه با يكديگر قرار گيرند جريان به شكل موج سه برابر و كريپل توليد خواهد شد كه به آن جريان متناوب سه فاز گفته مي شود. يك تعداد زيادتري از فازها ممكن است با افرايش تعداد سيم پيچها بدست آمده باشند و گرفته شوند در ارميچر اما در مهندسي برق مدرن جريان متناوب سه فاز بسيا پر كاربرد است و آلترناتور سه فاز ماشيني دينامو الكتريكي است كه بطور كلي براي توليد قدرت الكتريكي (يا توان الكتريكي) بكار مي رود. ولتاژ خاي بالاي 13200 در آلترناتور ها رايج ترند.
ژنراتور الکتریکی

یک ژنراتور الکتریکی دستگاهی است که از یک منبع انرژی مکانیکی تولید انرژی الکتریکی می‌کند. این فرآیند را تولید الکتریسته می‌نامند.
قبل از اینکه ارتباط بین مغناطیس و الکتریسته کشف شود، ژنراتورها از اصول الکتروستاتیک بهره می‌بردند. ماشین ویمشارت از القای الکتروستاتیک یا تأثیر کردن استفاده می‌کرد. ژنراتور واندوگراف از اثر تریبوالکتریک برق مالشی برای جدا سازی بارهای الکتریکی با استفاده از اصطکاک بین عایقها استفاده می‌کرد. ژنراتورهای الکتروستاتیک کارآمد نیستند و تنها برای آزمایشات علمی که نیازمند ولتاژهای بالا است، مناسب هستند.
فارادی

در سال 1831–1832م مایکل فارادی کشف کرد که بین دو سر یک هادی الکتریکی که بصورت عمود بر یک میدان مغناطیسی حرکت می‌کند، اختلاف پتانسیلی ایجاد می‌شود. او اولین ژنراتور الکترومغناطیسی را بر اساس این اثر ساخت که از یک صفحه مسی دوار بین قطبهای یک آهنربای نعل اسبی تشکیل شده بود. این وسیله یک جریان مستقیم کوچک را تولید می کرد.
دینامو

دینامو اولین ژنراتور الکتریکی قادر به تولید برق برای صنعت بود و کماکان مهمترین ژنراتور مورد استفاده در قرن بیست و یکم است. دینامو از اصول الکترومغناطیس برای تبدیل چرخش مکانیکی به یک جریان الکتریکی متناوب ، استفاده می‌کند. اولین دینامو بر اساس اصول فارادی در سال 1832 توسط هیپولیت پیکسی که یک سازنده تجهیزات بود، ساخته شد. این وسیله دارای یک آهنربای دائم بود که توسط یک هندل گردانده می‌شد. آهنربای چرخنده بگونه‌ای قرار داده می‌شد که یک تکه آهن که با سیم پوشانده شده بود، از قطبهای شمال و جنوب آن عبور می‌کرد. پیکسی کشف کرد که آهنربای چرخنده ، هر بار که یک قطبش از سیم پیچ عبور می‌کند، تولید یک پالس جریان در سیم می‌کند. به علاوه قطبهای شمال و جنوب آهنربا جریانها را در جهتهای مختلف القا می‌کنند. پیکسی توانست با اضافه کردن یک کموتاتور جریان متناوب تولیدی به این روش را به جریان مستقیم تبدیل کند.
دیناموی گرام

به هر حال هر دوی این طرحها دارای مشکل یکسانی بودند: آنها پرشهای جریانی القا می‌کردند که از هیچ چیز پیروی نمی‌کرد. یک دانشمند ایتالیایی به نام آنتونیو پاسینوتی این مسأله را با جایگزینی سیم پیچ چرخنده توسط یک سیم پیچ حلقه‌ای که او با سیم پیچی یک حلقه آهنی درست کرده بود، حل کرد. این بدان معنی بود که آهنربا همواره از بخشی سیم پیچ عبور می‌کرد که این مسأله موجب یکنواختی جریان خروجی می‌شد. زنوب گرام چند سال بعد در حین طراحی اولین نیروگاه تجاری در پاریس در دهه 1870م ، این طرح را دوباره ابداع کرد. طراحی وی با نام دینامی گرام معروف است. نسخه‌های مختلف و تغییرات زیادی از آن هنگام تا کنون در این طراحی بوجود آمده است، اما ایده اصلی چرخش یک حلقه بی پایان از سیم ، کماکان قلب تمامی دیناموهای پیشرفته باقی ماند.
مفاهیم

دانستن این مطلب مهم است که ژنراتور تولید جریان الکتریکی می‌کنند و نه بار الکتریکی که در سیمهای سیم پیچی‌اش وجود دارد. این تا حدودی شبیه یک پمپ آب است که ایجاد یک جریان آب می‌کند اما خود آب را ایجاد نمی‌کند. ژنراتورهای الکتریکی دیگری هم وجود دارند، اما بر اساس دیگر پدیده‌های الکتریکی نظیر: پیزو الکتریسته و هیدرو دینامیک مغناطیسی ، ساختار یک دینامو شبیه یک موتور الکتریکی است و تمام انواع عمومی دیناموها می‌توانند مانند موتورها کار کنند. همچنین تمامی انواع عمومی موتورهای الکتریکی می‌توانند مانند یک ژنراتور کار کنند.
ژنراتورهاي الكتريكي اصلاح شده داراي بازده و قابليت اعتماد بيشتري هستند.
ژنراتورهاي‌ توربيني‌ در بيش‌ از 100 سال‌ پيش‌ كه‌ براي‌ اولين‌ بار وارد عرصه‌ كاري‌شدند با هوا خنك‌ مي‌شدند. با اين‌ حال‌ همچنان‌ كه‌ خروجي‌ واحد ژنراتور افزايش‌ پيدا كردنياز به‌ خنك‌كنندگي‌ موثر افزايش‌ يافت‌. اين‌ نياز منجر به‌ تكميل‌ ژنراتورهايي‌ شد كه‌ باهيدروژن‌ و آب‌، خنك‌ مي‌شدند. هدايت‌ حرارتي‌ هيدروژن‌، هفت‌ برابر هوا بوده‌ و با همان‌فشار مطلق‌، چگالي‌ آن‌ يك‌ دهم‌ هواست‌.
پيش‌ از انتخاب‌ نوع‌ سيستم‌خنك‌كنندگي‌ مورد استفاده‌ براي‌ ژنراتور، دوموضوع‌ عمده‌ وجود دارد كه‌ عبارتند از:اندازه‌ مگاولت‌ آمپر ژنراتور و يك‌ سايت‌ هوابا كيفيت‌ خوب‌. با وجود اين‌ كه‌خنك‌كنندگي‌ با هوا نوعا براي‌ واحدهاي‌كوچكتر استفاده‌ مي‌شود هم‌ اكنون‌ اصلاح‌فن‌آوريهاي‌ جديد به‌ هوا اين‌ امكان‌ رامي‌دهد تا براي‌ ژنراتورهايي‌ كه‌ حداكثر30مگاولت‌ آمپر ظرفيت‌ دارند مورد استفاده‌قرار گيرد. ژنراتورهاي‌ الكتريكي‌، حجم‌ زيادي‌ ازهوا را مصرف‌ مي‌كنند. در جايي‌ كه‌ كيفيت‌هوا مساله‌ ساز نيست‌ ژنراتورها با سيستم‌خنك‌كنندگي‌ هواي‌ باز كه‌ بازده‌ بالايي‌ از نظرفيلتراسيون‌ و آب‌ بندي‌ محوري‌ تحت‌ فشاردارند بهترين‌ انتخاب‌ و همچنين‌ داراي‌حداقل‌ هزينه‌ است‌.
سايتهاي‌ نيروگاه‌ قدرت‌ كه‌ داراي‌ ذرات‌ريز و سولفور قابل‌ ملاحظه‌ هستند بايدژنراتورهايي‌ را كه‌ خنك‌كنندگي‌ آنها با آب‌ وهواي‌ محبوس‌ انجام‌ مي‌شود مورد بررسي‌قرار دهند. اين‌ ژنراتورها چنانچه‌ داراي ‌سيستم‌ خنك‌ كنندگي‌ با آب‌ و آب‌ بندي‌محوري‌ تحت‌ فشار با فيلترهاي‌ هواي‌جبراني‌ باشند از نظر فيزيكي‌ بزرگتر هستند.ژنراتورهايي‌ كه‌ خنك‌كنندگي‌ آنها با آب‌ وهواي‌ محبوس‌ صورت‌ مي‌گيرد ازژنراتورهايي‌ كه‌ خنك‌كنندگي‌ آنها با هواي‌ بازانجام‌ مي‌شود گران‌تر بوده‌ و بازده‌ كمتري‌ نيزدارند.
با اين‌ همه‌ در حالي‌ كه‌ ذرات‌ ريز، يك‌موضوع‌ قابل‌ بررسي‌ است‌ و وقتي‌ كه‌مساله‌اي‌ از نظر ذخيره‌سازي‌ هيدروژن‌ درنيروگاه‌ وجود ندارد عموما ژنراتورهايي‌ كه‌ باهيدروژن‌ خنك‌ مي‌شوند انتخاب‌ مناسبي‌ به‌نظر مي‌رسد. با وجود آن‌ كه‌ اين‌ نوع‌ ازژنراتور گرانترين‌ نوع‌ است‌ ولي‌ بالاترين‌بازده‌ را دارد.
سيستم هاي‌ خنك‌ كنندگي‌

طراحي‌ واحدهايي‌ كه‌ با هيدروژن‌خنك‌ مي‌شوند در مقايسه‌ با ژنراتورهايي‌ كه‌با هوا خنك‌ مي‌شوند پيچيده‌تر است‌.سيستمهايي‌ كه‌ با هيدروژن‌ خنك‌ مي‌شوندبه‌ محفظه‌اي‌ كه‌ در مقابل‌ فشار مقاوم‌ باشد ونيز به‌ آب‌ بندي‌ خاص‌ و يك‌ دستگاه‌ تهويه‌گازي‌ نياز دارند. علاوه‌ بر آن‌ سيستمهايي‌ كه‌با هيدروژن‌ خنك‌ مي‌شوند قبل‌ از آن‌ كه‌براي‌ تعمير و نگهداري‌ از سرويس‌ خارج‌شوند بايد با دي‌ اكسيد كربن‌ پاكسازي‌ شوند. همچنين‌ قبل‌ از آن‌ كه‌ مجددٹ از هيدروژن‌ پرشوند و به‌ سرويس‌ بازگردند لازم‌ است‌ بادي‌اكسيد كربن‌ پاكسازي‌ شوند. با وجود آن‌كه‌ ژنراتورهايي‌ كه‌ با هوا خنك‌ مي‌شوند ازنظر فيزيكي‌ بزرگتر از ژنراتورهايي‌ هستند كه‌با هيدروژن‌ خنك‌ مي‌شوند، با اندازه‌ يكسان ‌داراي‌ هزينه‌ اوليه‌ كمتري‌ هستند. به‌ علاوه‌تعمير آنها ساده‌تر و با هزينه‌ كمتر است‌.ژنراتورهاي‌ بزرگي‌ كه‌ با هوا خنك‌ شده‌ ومتعلق‌ به‌ شركت‌ آلستوم‌ هستند عمومٹمجهز به‌ سيستم‌ خنك‌كنندگي‌ آب‌ - هواي ‌محبوس‌ (TEWAC) هستند. در سيستم‌خنك‌كنندگي‌ آب‌ - هوا، ژنراتور به‌ وسيله‌هوا خنك‌ مي‌شود. هواي‌ گرم‌ پس‌ از آن‌ كه‌در خنك‌كن‌هاي‌ آب‌ - هوا سرد شد مجددٹوارد سيكل‌ مي‌شود. در اين‌ واحدهاهاديهاي‌ سيم‌پيچ‌ ميدان‌ روتور تو خالي‌ بوده‌و به‌ صورت‌ محوري‌ خنك‌ مي‌شوند. برخلاف‌ بخش‌ فعال‌ ژنراتورهاي‌ قديمي‌ كه‌ باهوا خنك‌ مي‌شوند، سيم‌پيچهاي‌ ميدان‌جديدتر در هر ماشين‌ داراي‌ دو بخش‌خنك‌كن‌ است‌. در بخش‌ اول‌ جريان‌ هوا اززير استوانه‌ انتهايي‌ مي‌گذرد و قبل‌ از خروج‌به‌ داخل‌ هادي‌ تو خالي‌ جريان‌ پيدا مي‌كند.جريان‌ هواي‌ خنك‌ كن‌ براي‌ بخش‌ دوم‌ ازطريق‌ يك‌ شيار فرعي‌ كه‌ در زير سيم‌ پيچ‌تعبيه‌ شده‌ است‌ صورت‌ مي‌گيرد.
هسته‌ استاتور كه‌ به‌ شكل‌ محوري‌ به‌اتاقهايي‌ تقسيم‌ شده‌ است‌ هواي‌ خنك‌ كننده‌براي‌ استاتور را فراهم‌ مي‌آورد. اين‌ كار باجريان‌ متناوب‌ هوا به‌ داخل‌ و به‌ بيرون‌اتاقكهاي‌ تهويه‌ انجام‌ مي‌شود.
توليدكنندگان‌ با اضافه‌ كردن‌ اتاقكهاي‌تهويه‌ بيشتر نسبت‌ به‌ ماشينهاي‌ ژنراتور كوتاهتر قديمي‌ توانسته‌اند ميزان‌خنك‌كنندگي‌ ژنراتور را بهينه‌ كنند. طبق‌گزارش‌ آلستوم‌، بهينه‌ سازي‌ خنك‌كنندگي‌ واين‌ واقعيت‌ كه‌ هم‌ اكنون‌ خروجيهاي‌بيشتري‌ براي‌ هواي‌ خنك‌ كن‌ روتور وجوددارد توزيع‌ دما در سيم‌پيچ‌ استاتور و هسته‌را يكنواخت‌ كرده‌ است‌.
شكستن‌ مانع‌ 300 كيلوولت‌ آمپري‌

انجام‌ اصلاحات‌، طي‌ چند سال‌ اخير برروي‌ طراحي‌ ژنراتورهايي‌ كه‌ با هوا خنك‌مي‌شوند سبب‌ شده‌ است‌ كه‌ واحدهايي‌توليد شود كه‌ تا چند سال‌ گذشته‌ فقط باژنراتورهايي‌ كه‌ با هيدروژن‌ خنك‌ مي‌شوند امكان‌پذير بود. درطول‌ چهار دهه‌ گذشته‌ظرفيت‌ ژنراتورهايي‌ كه‌ با هوا خنك‌مي‌شوند از 90 مگاولت‌ آمپر به‌ بيش‌ از 300مگاولت‌ آمپر افزايش‌ يافته‌ است‌.
يكي‌ از توليدكنندگان‌ (آلستوم‌) خروجي‌ژنراتورهايي‌ كه‌ با هوا خنك‌ مي‌شوند را تا33 درصد افزايش‌ داده‌ است‌. اين‌ كار باافزايش‌ قطر روتور و طول‌ فعال‌ آن‌ به‌ ميزان‌10 درصد اجرا شده‌ است‌. افزايش‌ خطي‌ژنراتور نيز حجم‌ Slot (يكي‌ از شيارهاي‌نگهدارنده‌ رسانا در سطح‌ روتور يا استاتوريك‌ ماشين‌ گردنده‌ الكتريكي‌) را بزرگتر كرده‌و در نتيجه‌ سيم‌پيچهاي‌ بيشتري‌ قابل‌ اضافه‌كردن‌ بود.
متاسفانه‌ وقتي‌ قطر روتور افزايش‌ داده‌مي‌شود اتلاف‌ سيم‌پيچ‌ نيز افزايش‌ مي‌يابد.بخش‌ قابل‌ توجهي‌ از اتلاف‌ سيم‌ پيچي‌ناشي‌ از اصطكاك‌ سطح‌ است‌.
ژنراتورها ديگري‌ كه‌ توسط آلستوم‌تكميل‌ شده‌ يك‌ ماشين‌ 50 هرتز 500مگاولت‌ آمپري‌ است‌. اين‌ ماشين‌ يك‌پيشرفت‌ عمده‌ در فن‌ آوري‌ ژنراتورهايي‌ كه‌با هوا خنك‌ مي‌شوند بوده‌ و خنك‌كنندگي‌آن‌ به‌ شكل‌ معكوس‌ امكان‌پذير شد. درخنك‌كنندگي‌ معكوس‌، فنها در بالا دست‌كولر قرار مي‌گيرند و به‌ اين‌ ترتيب‌ بخش‌فعال‌ ژنراتور به‌ طور مستقيم‌ و بدون ‌هيچ‌گونه‌ پيش‌ گرمايشي‌ از هوايي‌ كه‌ ازكولرها مي‌آيد بهره‌مند مي‌شود. هوايي‌ كه‌ به‌طور مستقيم‌ از فنها تامين‌ شده‌ است‌همچنان‌ كه‌ از درون‌ فن‌ عبور مي‌كند،پيش‌گرم‌ مي‌شود.
هوا در پايين‌ دست‌ كولرها در ابتدا ازيك‌ ناحيه‌ مخلوط عبور مي‌كند كه‌ توزيع ‌همگني‌ از هواي‌ سرد را به‌ ورودي‌ ژنراتورمي‌رساند. حتي‌ اگر يك‌ كولر، خارج‌ ازسرويس‌ باشد اين‌ نوع‌ از خنك‌كنندگي‌ به‌ژنراتور اين‌ امكان‌ را مي‌دهد كه‌ با75 درصداز خروجي‌ اسمي‌ خود كار كند.
محفظه‌ ژنراتور 500 مگاولت‌ آمپرآلستوم‌ كه‌ با هوا خنك‌ مي‌شود كاملاجوشكاري‌ شده‌ و داراي‌ ياتاقانهايي‌ است‌ كه‌بر روي‌ محفظه‌اي‌ نصب‌ شده‌ و از يك‌سيستم‌ خنك‌كننده‌ بسته‌ استفاده‌ مي‌كند.ابتكار طراحي‌ عمده‌ ديگر آن‌ است‌ كه‌ژنراتور با راه‌ آهن‌ قابل‌ حمل‌ونقل‌ است‌.
بررسي‌ اصلاحات‌

در حالي‌ كه‌ بيش‌ از 20 سال‌ از كار اغلب‌نيروگاههاي‌ قدرت‌ ايالات‌متحده‌ مي‌گذرد متخصصان‌ نيروگاههاي‌ توليد برق‌ در جست‌و جوي‌ راههايي‌ بوده‌اند تا قابليت‌ اعتماد ودر دسترس‌ بودن‌ ژنراتورهاي‌ قديمي‌ رابهبود بخشند. غير از جايگزيني‌ ژنراتورها،برخي‌ از ژنراتورهاي‌ قديمي‌تر را معمولا مي‌توان‌ با سيم‌ پيچي‌ مجدد استاتورها ونوكردن‌ exciter (ژنراتور كمكي‌ كوچكي‌ كه‌جريان‌ ميداني‌ لازم‌ را براي‌ ژنراتوري‌ باجريان‌ متناوب‌ فراهم‌ مي‌كند) اصلاح‌ كرد.
دبليوجي‌ مور مدير مهندسي‌ كويل‌برق‌ ملي‌ در كلمبوس‌ اوهايو مي‌گويد كه‌ درهنگام‌ اصلاح‌ و بازسازي‌ ژنراتورهاي‌الكتريكي‌، يكي‌ از اولين‌ مراحل‌، آن‌ است‌ كه‌شرايط فورجينگ‌ روتور ارزيابي‌ شود.
در غير از مواردي‌ كه‌ مسائل‌ جدي‌ بروز كندجايگزين‌ كردن‌ روتور، لازم‌ نيست‌. هرگونه‌تركي‌ كه‌ در سوراخها پيدا شود عموما ازفركانس‌ پايين‌ و ناشي‌ از تنشهاي‌ چرخشي‌در اثناي‌ شروع‌ بكار و توقف‌ واحد است‌.
با اين‌ همه‌ چنين‌ تركهايي‌ را نبايد ناديده‌گرفت‌ چرا كه‌ مي‌توانند منجر به‌ گسيختگي‌كاتاستروفيك‌ روتور شوند. به‌ گفته‌ >مور<قبل‌ از بازگرداندن‌ يك‌ روتور قديمي‌تر به‌سرويس‌ بايد سوراخها به‌ طور كامل‌ بازرسي‌شوند تا شرايط كيفي‌ آنها براي‌ كاركرددرازمدت‌ تاييد شود.
علاوه‌ بر بازرسي‌ چشمي‌ سوراخ‌،آزمايشهاي‌ مغناطيسي‌ و ماوراي‌ بنفش‌UT نيز بايد اجرا شود. هرگونه‌ مسأله‌سطحي‌ را مي‌توان‌ با سنگ‌ زدن‌ سوراخ‌،اصلاح‌ كرد. با اين‌ حال‌، تركهاي‌ عميق‌تر بايدبا سوراخ‌ كردن‌ برداشته‌ شوند.
محلهاي‌ دندانه‌ دار روتور مي‌تواند درشعاعهاي‌ ماهيچه‌اي‌ بالاي‌ دندانه‌، ايجادترك‌ كند. اين‌ سوراخها را مي‌توان‌ با بازرسي‌چشمي‌، آزمايش‌ با جريان‌ گردابي‌ (آزمايش‌غير تخريبي‌ كه‌ در آن‌ تغيير امپدانس‌ يك‌كويل‌ آزمايش‌ كه‌ به‌ نزديك‌ نمونه‌ هادي‌آورده‌ شده‌ است‌ جريانهاي‌ گردابي‌ ايجادشده‌ به‌ وسيله‌ كويل‌ را از خود نشان‌ مي‌دهدو در نتيجه‌ برخي‌ از خواص‌ يا معايب‌ نمونه‌را آشكار مي‌كند)، نافذ رنگي‌ (مايعي‌ داراي‌رنگ‌ كه‌ براي‌ تشخيص‌ تركها يا ساير معايب‌سطحي‌ مواد غير مغناطيسي‌ بكار مي‌رود) ويا با آزمايش‌ ذرات‌ مغناطيسي‌ مرطوب‌،آشكار كرد. با اين‌ همه‌ >مور< مي‌گويد: >هيچ‌گزارشي‌ از وقفه‌ اجباري‌ ناشي‌ از تركهاي‌دندانه‌دار، ثبت‌ نشده‌ است‌. تركهاي‌ كوچك‌را مي‌توان‌ با بزرگ‌ كردن‌ شعاع‌ ماهيچه‌،برداشت‌ به‌ طور ي‌ كه‌ در عين‌ حال‌ تركهاي‌بزرگتر نياز به‌ برداشتن‌ بالاي‌ دندانه‌ها وسپس‌ بازسازي‌ يك‌ حلقه‌ حايل‌ طولاني‌تردارند<.
هنگامي‌ كه‌ رطوبت‌، وجود داشته‌ باشد حلقه‌هاي‌ حايل‌ غير مغناطيسي‌ از جنس‌5Cr 18Mn نسبت‌ به‌ تنش‌ ترك‌ خوردگي‌تاثير پذيرند و در اثناي‌ هر گونه‌ اصلاح‌ژنراتور بايد تعويض‌ شوند. معمولا اين‌ نوع‌حلقه‌ها با حلقه‌هايي‌ از جنس‌18 Cr 18Mn تعويض‌ مي‌شوند. طبق‌گزارش‌ G.E. فولاد ضد زنگ‌ غير مغناطيسي‌18-18 نسبت‌ به‌ تنش‌ ترك‌ خوردگي‌ مقاوم‌است‌.
ترك‌ خوردگي‌ شيار فنري‌ شبه‌ بست‌(نوعي‌ فنر كه‌ به‌ عنوان‌ بست‌ استفاده‌مي‌شود) به‌ وسيله‌ نيروهاي‌ متناوب‌ حلقه‌حايل‌ مخروطي‌ در حال‌ كشش‌ بالاي‌دندانه‌ها ايجاد مي‌شود. با اين‌وجود >مور< مي‌گويد: اين‌ تركها به‌ سادگي‌ بايك‌ آزمايش‌ نفوذ پذيري‌ فلورسنت‌ مغناطيسي‌ مرطوب‌، آشكار مي‌شوند. مشابه‌ترك‌ خوردگي‌ دندانه‌ روتور، تركهاي‌ درون‌شيار فنر شبه‌ بست‌ را مي‌توان‌ با بزرگ‌ كردن‌شعاع‌، اصلاح‌ كرد.
سيم‌ پيچها و عايق‌ بندي‌

سيم‌ پيچهاي‌ مسي‌ روتور، عمرنامحدودي‌ دارند ولي‌ وقتي‌ كه‌ يك‌ روتورتحت‌ تاثير گرماي‌ بيش‌ از حد قرار گيرد،مس‌، نرم‌ مي‌شود. اگر مس‌ بيش‌ از حد نرم‌شده‌ باشد، آزمايش‌، سختي‌ آن‌ را تعيين‌خواهد كرد. >مور< مي‌گويد: بازرسي‌ چشمي‌بايد هرگونه‌ اعوجاج‌ اضافي‌ را مشخص‌ كند.
ترك‌ خوردگي‌ درپيچهاي‌ مسي‌ روتور درروتورهايي‌ كه‌ روي‌ حلقه‌هاي‌ حايل‌ آن‌محور كوتاهي‌ نصب‌ شده‌ باشد عادي‌ است‌.
اين‌ ترك‌ خوردگيها را مي‌توان‌ با يك‌ آزمايش‌نافذ رنگي‌ بررسي‌ كرد. سيم‌ پيچهاي‌ مسي‌باز پخت‌ شده‌ با مقاومت‌ كم‌ كه‌ در واحدهاي ‌قديمي‌ نصب‌ شده‌اند بايد با نوعي‌ مس‌ بامقاومت‌ بيشتر جابه‌جا شوند. طبق‌ گفته‌>مور< اين‌ ماده‌ (مس‌ با مقاومت‌ بيشتر)نسبت‌ به‌ تغيير شكل‌، مقاوم‌ است‌. متاسفانه‌يك‌ سيم‌ پيچ‌ باز پيچيده‌ شده‌ جديد مسي‌ ازمسهاي‌ قديمي‌ كه‌ مجددا استفاده‌ شده‌ باشدگرانتر است‌.
اصلاحاتي‌ كه‌ در عايق‌ بندي‌ و صفحات‌لغزش‌ از جنس‌ ماده‌اي‌ با ضريب‌ اصطكاك‌ كم‌ انجام‌ شده‌ است‌ اعوجاج‌ سيم‌پيچهاي‌روتور را به‌ حداقل‌ رسانده‌ و كاركردژنراتورها را اصلاح‌ كرده‌ است‌ برخلاف‌سيم‌پيچهاي‌ روتوري‌ كه‌ به‌ صورت‌ اقتصادي‌مجددا پيچيده‌ شده‌ باشند عموما با سيم‌پيچهاي‌ استاتور جايگزين‌ مي‌شوند. باپيشرفتهايي‌ كه‌ هم‌ اكنون‌ در سيستمهاي‌عايق‌ بندي‌ انجام‌ شده‌، عايق‌بندي‌ كمتري‌مورد نياز است‌.
كاربرد ژنراتورهاي‌ الكتريكي‌ دراثردرجه‌ حرارت‌ حداكثر مجاز رساناهاي‌ مسي‌در سيم‌ پيچهاي‌ استاتور و نيز دراثر انتقال‌حرارت‌ در درون‌ عايق‌بندي‌، محدود شده‌است‌. با اين‌ وجود كاركرد ژنراتور در درجه‌ حرارتهاي‌ بالاتر براي‌ مس‌هاي‌ هادي‌ درهنگامي‌ امكان‌پذير است‌ كه‌ كلاس‌ حرارتي‌بالاتري‌ براي‌ ماده‌ عايق‌ بندي‌، استفاده‌ شده‌باشد. واضح‌ است‌ كه‌ با كاركرد ژنراتور دردرجه‌ حرارتهاي‌ بالاتر، خروجي‌ ژنراتور افزايش‌ پيدا مي‌كند. هم‌ اكنون‌ براي‌ كاركردژنراتور در درجه‌ حرارتهاي‌ بالاتر، موادجديدي‌ وجود دارد. به‌ دليل‌ اين‌ كه‌عايق‌بندي‌ جديد، مقاومت‌ حرارتي‌ كمتري‌دارد انتقال‌ حرارت‌ ميله‌هاي‌ استاتور، بهبودپيدا كرده‌ و خروجي‌ ژنراتور افزايش‌ مي‌يابد.
با وجود آن‌ كه‌ براي‌ ژنراتورهاي‌ بزرگترهنوز هم‌ روش‌ خنك‌ كنندگي‌ به‌ وسيله‌هيدروژن‌ مورد استفاده‌ قرار مي‌گيرداصلاحات‌ اخير در سيستمهاي‌ خنك‌كنندگي‌با هوا و همچنين‌ عايق‌ بندي‌ به‌ روش‌ خنك‌كنندگي‌ با هوا اجازه‌ داده‌ است‌ تا باسيستمهاي‌ خنك‌كنندگي‌ به‌ وسيله‌ هيدروژن‌براي‌ ژنراتورهايي‌ كه‌ حداكثر ظرفيت‌ آنها500 مگاولت‌آمپر است‌ رقابت‌ كنند. طبق‌نظر سازندگان‌، استفاده‌ از ژنراتورهايي‌ كه‌ باهوا خنك‌ مي‌شوند و ظرفيتشان‌ بيش‌ از50مگاولت‌ آمپر باشد موضوعي‌ است‌ كه‌فقط زمان‌، آن‌ را حل‌ خواهد كرد.
موتور شدن ژنراتور در اثر برگشت وات (حفاظت توربین بخار)

ژنراتورها باید انرژی الکتریکی به شبکه بدهند و هیچگاه از شبکه انرژی نگیرند . از این جهت در گذشته (در حدود 30 سال پیش) ژنراتورها را با یک رلۀ واتمتری مجهز می کردند ، بطوریکه این رلۀ واتمتری در موقع برعکس شدن جهت انرژی ، عمل کرده و ژنراتور را از مدار قطع می کرد .
این قطع کردن ژنراتور در موقع برگشت وات لازم نیست ، زیرا برگشت وات ضرری به ژنراتور واردنمی کند ، بلکه پس از قدری پاندولی و نوسانی شدن ، ژنراتور مجدداً حالت عادی خود را باز می یابد و به کار خود ادامه می دهد . از این جهت امروزه رلۀ برگشت وات جهت قطع ژنراتور در موقع تغییر جهت دادن انرژی الکتریکی به کار برده نمی شود ، بلکه برای حفاظت توربین از آن استفاده می شود .
در لوله های بخار رسان توربین بخار ممکن است دو اشکال پیش آید :
یکی اینکه در اثر ترکیدن و یا سوراخ شدن لولۀ بخار ، عمل رساندن بخار به توربین قطع گردد . در این صورت اگر این ژنراتور بطور موازی با ژنراتورهای دیگر بسته شده باشد ، از شبکه انرژی الکتریکیمی گیرد و به صورت موتور به گردش خود ادامه می دهد و توربین را با دور سنکرون می گرداند .
در حالت دوم ممکن است دریچۀ بخار بسته شده ولی به دلیل جذب نبودن سوپاپ خروجی ، بخار صد در صد قطع نگردیده باشد و مقداری بخار به داخل توربین نشت کند بطوریکه حجم بخاری که وارد توربین می شود بیشتر از مقداری باشد که برای گرداندن توربین بدون بار لازم است . در صورتیکه در این حالت ژنراتور از شبکه قطع گردد ، توربین سرعت گرفته و دور آن آنقدر زیاد می شود که به اصطلاح سبب از جا کندن توربین و خورد شدن یاطاقانهای آن می شود .
تنها وسیله ای که در این دو حالت از توربین حفاظت می کند ، رلۀ برگشت وات است . رلۀ برگشت وات معمولاً یک رلۀ اندوکسیونی است که دارای دو حوزۀ عمود بر هم با اختلاف فاز 90 درجه و یک صفحۀ آلومینیومی است .
معرفی نرم افزار MICAA براي بررسي وضعيت سيم پيچها در موتورها و ژنراتورها

سيستم MICAA يكي از ابزارهاي مهم نگهداري غير مستقيم است كه به استفاده كنندگان كمك مي كند تا خطر وقوع عيب در سيم پيچي هاي روتور و استاتور و ورقه هاي هسته موتورها و ژنراتورهاي بزرگ را تشخيص دهند .
استفاده گسترده از MICAA توسط استفاده كنندگان و صنايع سراسر دنيا باعث شده كه از وقوع خطا در ماشينهاي در حال كار جلوگيري شده ، مراقبت از سيم پيچها در نيروگاه بهبود يافته و هزينه ها كاهش يابد .
سيستم MICAA كه ابداعي توسط IRIS با همكاري EPRI مي باشد، حاصل صرف ميليونها دلار براي انجام تحقيقات صنعتي و تجارب بهره برداري از نيروگاهها است .
برخي از ويژگيهاي MICAA به شرح زير مي باشد :

از تعميرات و از سرويس خارج كردن هاي غيرضروري اجتناب مي شود زيرا MICAA قادر است با دقت كامل مشكلات ماشين را تشخيص و طبقه بندي كند.
MICAA آزمايشات زائد و پر هزينه را با دسته بندي آزمايشات و بررسي اينكه كدام روش با توجه به وضعيت سيم پيچي يك ماشين خاص مناسب تر خواهد بود ، حذف مي كند.
هنگامي كه از MICAA بعنوان قسمتي از يك برنامه نگهداري جامع و غيرمستقيم استفاده مي شود مي توان وضعيت نامناسب موتورها و ژنراتورها را تشخيص داده و پيش از اينكه دچار حادثه شوند نسبت به تعمير آنها اقدام نمود .
هزينه ها محدود شده و امكانات نيروگاه را مي توان تنها به تجهيزاتي كه نياز به رسيدگي دارند معطوف نمود.
افراد كم تجربه تر مي توانند بيشتر اطلاعات مناسب براي فرايند تشخيص را جمع آوري كرده و افراد مجرب فرصت مي يابند كه تنها بر روي ماشينهايي كه وجود مشكل در آنها تشخيص داده شده متمركز شوند.
بانك اطلاعاتي MICAA بطور دائم نگهداري شده و با ايجاد كلمه رمز ورود، ميتوان از دسترسي افراد غير مجاز به آن جلوگيري نمود و بدين ترتيب قابليت اطمينان آنرا بالا برد.
قابليت ذخيره دائمي داده ها در MICAA ، دسترسي به سابقه كامل بهره برداري هريك از اجزاء روتور ،استاتور و هسته را فراهم مي كند. هنگامي كه يك جزء از يك ماشين به ماشين ديگر انتقال مي يابد، سابقه بهره برداري ، آزمايش و تشخيص نقص آن نيز به سهولت به پرونده اطلاعاتي ماشين جديد فرستاده مي شود .
بانك اطلاعاتي جامع MICAA داراي قابليت هاي گرافيكي براي رسم نتايج آزمايش براي هر ماشين است .
ويژگي Tech Help سيصد صفحه اي شامل صدها نمودار و عكس ، حتي افراد نا آشنا با ماشين هاي دوار را با توضيح مكانيزم خطا در استاتور و روتور آموزش داده و آنها را قادر مي سازد تا آزمايشات و بررسي هاي كارشناسانه بر روي ماشين ها انجام دهند.
MICAA مي تواند بر روي هر نوع كامپيوتر شخصي كه از سيستم عامل ويندوز استفاده مي كند، اجرا شود.
MICAA با يك يا چند استفاده كننده مي تواند كار كند. هم با محيطLAN و هم با محيط WAN سازگار است .
منابع:
شركت IRIS POWER ENGINEERING
www.irispower.com
turanim.blogfa.com
http://www.ewa.ir/
Power Engineering/ July 2001
mamalbargh.persianblog.com
www.kamalkamali.blogfa.com
www.barghkar.blogfa.com
www.kamalkamali.blogfa.com
daneshnameh.roshd.ir
مهندس حسين هوشيار- دكتر ابوالفضل واحدي- مهندس مهدي ثواقبي فيروز‌آبادي
ماهنامه صنعت برق
وبلاگ برق- شبکه های انتقال و توزیع

Neg@r
21st July 2012, 11:42 PM
من یک پیشنهاد برای شما دارم.بهتر بود که بعضی از قسمت های مهمتر رو رنگی میکردید یا با فونت درشت تر قرار می دادید تا توجه به اون قسمت بیشتر جلب بشه.چون مثلا برای من که تخصصی درس نمیخونم و اول دبیرستان هستم خوندن و درک همه ی این متن کمی دشواره.ممنون از پست خوبتون

استفاده از تمامی مطالب سایت تنها با ذکر منبع آن به نام سایت علمی نخبگان جوان و ذکر آدرس سایت مجاز است

استفاده از نام و برند نخبگان جوان به هر نحو توسط سایر سایت ها ممنوع بوده و پیگرد قانونی دارد