PDA

توجه ! این یک نسخه آرشیو شده میباشد و در این حالت شما عکسی را مشاهده نمیکنید برای مشاهده کامل متن و عکسها بر روی لینک مقابل کلیک کنید : مقاله روتر و سوئیچ



آبجی
15th March 2010, 01:38 AM
آشنائی با روتر
يکی از دلايل مهم گسترش استفاده از روتر ، ضرورت اتصال يک شبکه به چندين شبکه ديگر ( اينترنت و يا ساير سايت ها ی از راه دور ) در عصر حاضر است . نام در نظر گرفته شده برای روترها ، متناسب با کاری است که آنان انجام می دهند : ارسال داده از يک شبکه به شبکه ای ديگر
انواع روترها
روترها را می توان به دو گروه عمده سخت افزاری و نرم افزاری تقسيم نمود:
روترهای سخت افزاری : سخت افزارهائی می باشند که نرم افزارهای خاص توليد شده توسط توليد کنندگان را اجراء می نمايند .نرم افزار فوق ، قابليت روتينگ را برای روترها فراهم نموده تا آنان مهمترين و شايد ساده ترين وظيفه خود که ارسال داده از يک شبکه به شبکه ديگر است را بخوبی انجام دهند . اکثر شرکت ها ترجيح می دهند که از روترهای سخت افزاری استفاده نمايند چراکه آنان در مقايسه با روترهای نرم افزاری، دارای سرعت و اعتماد پذيری بيشتری می باشند .
روترهای نرم افزاری : روترهای نرم افزاری دارای عملکردی مشابه با روترهای سخت افزاری بوده و مسئوليت اصلی آنان نيز ارسال داده از يک شبکه به شبکه ديگر است. يک روتر نرم افزاری می تواند يک سرويس دهنده NT ، يک سرويس دهنده نت ور و يا يک سرويس دهنده لينوکس باشد . تمامی سيستم های عامل شبکه ای مطرح ،دارای قابليت های روتينگ از قبل تعبيه شده می باشند .
در اکثر موارد از روترها به عنوان فايروال و يا gateway اينترنت ، استفاده می گردد . در اکثر موارد نمی توان يک روتر نرم افزاری را جايگزين يک روتر سخت افزاری نمود ، چراکه روترهای سخت افزاری دارای سخت افزار لازم و از قبل تعبيه شده ای می باشند که به آنان امکان اتصال به يک لينک خاص WAN ( از نوع Frame Relay ، ISDN و يا ATM ) را خواهد داد .يک روتر نرم افزاری ( نظير سرويس دهنده ويندوز ) دارای تعدادی کارت شبکه است که هر يک از آنان به يک شبکه LAN متصل شده و ساير اتصالات به شبکه های WAN از طريق روترهای سخت افزاری ، انجام خواهد شد .
مثال 1 : استفاده از روتر به منظور اتصال دو شبکه به يکديگر و ارتباط به اينترنت
فرض کنيد از يک روتر به منظور اتصال دو شبکه LAN به يکديگر و اينترنت ، استفاده شده است . زمانی که روتر داده ای را از طريق يک شبکه LAN و يا اينترنت دريافت می نمايد ، پس از بررسی آدرس مبداء و مقصد ، داده دريافتی را برای هر يک از شبکه ها و يا اينترنت ارسال می نمايد . روتر قادر است داده مورد نظر را به مقصد درست ، ارسال نمايد .
مثال 2: استفاده از روتر در يک شبکه LAN
فرض کنيد از يک روتر در يک شبکه LAN ، استفاده شده است . در مدل فوق ، هر يک از دستگاههای موجود در شبکه با روتر موجود نظير يک gateway برخورد می نمايند . بدين ترتيب ، هر يک از ماشين های موجود بر روی شبکه LAN که قصد ارسال يک بسته اطلاعاتی ( اينترنت و يا هر محل خارج از شبکه LAN ) را داشته باشند ، بسته اطلاعاتی مورد نظر را برای gateway ارسال می نمايند . روتر ( gateway ) نسبت به محل ارسال داده دارای آگاهی لازم می باشد . ( در زمان تنظيم خصلت های پروتکل TCP/IP برای هر يک از ماشين های موجود در شبکه يک آدرس IP برای gateway در نظر گرفته می شود ) .
مثال 3: استفاده از روتر به منظور اتصال دو دفتر کار
فرض کنيد ، بخواهيم از روتر به منظور اتصال دو دفتر کار يک سازمان به يکديگر ، استفاده نمائيم . بدين منظور هر يک از روترهای موجود در شبکه با استفاده از يک پروتکل WAN نظير ISDN به يکديگر متصل می گردند . با استفاده از يک کابل که توسط ISP مربوطه ارائه می گردد ، امکان اتصال به اينترفيس WAN روتر فراهم شده و از آنجا سيگنال مستقيما" به شبکه ISP مربوطه رفته و سر ديگر آن به اينترفيس WAN روتر ديگر متصل می گردد . روترها ، قادر به حمايت از پروتکل های WAN متعددی نظير Frame Relay , ATM , HDLC و يا PPP ، می باشند .
مهمترين ويژگی های يک روتر :
روترها دستگاههای لايه سوم ( مدل مرجع OSI ) می باشند .
اکثر روترهای مهم دارای سيستم عامل اختصاصی خاص خود می باشند .
روترها از پروتکل های خاصی به منظور مبادله اطلاعات ضروری خود ( منظور داده نيست ) ، استفاده می نمايند .
آشنائی با اينترفيس های روتر
همانگونه كه در مطلب آشنایی با عناصر داخلی روتر اشاره گرديد ، اينترفيس ها مسئوليت اتصالات روتر به دنيای خارج را برعهده داشته و می توان آنان را به سه گروه عمده اينترفيس های مختص شبكه محلی ، اينترفيس های مختص شبكه WAN و اينترفيس های كنسول و كمكی تقسيم نمود .
انواع اينترفيس های روتر
اينترفيس ها مسئوليت اتصالات روتر به دنيای خارج را برعهده داشته و می توان آنان را به سه گروه عمده تقسيم نمود :
اينترفيس های مختص شبكه محلی : با استفاده از این اينترفيس يك روتر می تواند به محيط انتقال شبكه محلی متصل گردد. اينگونه اينترفيس ها معمولا" نوع خاصی از اترنت می باشند . در برخی موارد ممكن است از ساير تكنولوژی های LAN نظير Token Ring و يا* ATM ( برگرفته از Asynchronous Transfer Mode ) نيز استفاده گردد .
*** ATM :
حالت انتقال ناهمگام (آسنکرون) یا ATM که مخفف Asynchronous Transfer Mode می‌باشد به پالس‌های ساعت وابستگی نداشته و در رده شبکه‌های اتصال گرا تقسیم بندی می‌شود. در این مدل جهت برقراری اتصال در آغاز بسته‌ای به سوی مقصد ارسال می‌شود، این بسته مسیر خود را بین مسیریاب‌های مختلف پیدا کرده و مدار مجازی را تشکیل می‌دهد. این اتصال که از این به بعد آنرا می‌توان اتصال فیزیکی در نظر گرفت. هر یک از این اتصال‌ها دارای یک شماره شناسایی است.
در این مدل اطلاعات به صورت بسته‌های ۵۳ بایتی(سلول) ارسال می‌گردد. این بسته‌ها از دو بخش سرآیند و داده‌های کاربر تشکیل شده‌اند. در بخش سرایند که ۵ بایت است اطلاعاتی همچون شماره شناسایی اتصال ذخیره می‌گردد. ATMها سرعت بالایی دارند، بسته‌ها را در یک مسیر و به ترتیب ارسال می‌کنند و از آنجایی که بسته‌ها کوچک اند، کیفیت هم بالا است. این مدل شباهت‌هایی به شبکه‌های گسترده دارد و دارای پهنای باندی حدود ۶۲۲-Mbps است.
اينترفيس های مختص شبكه WAN : اين نوع اينترفيس ها اتصالات مورد نياز از طريق يك ارائه دهنده سرويس به يك سايت خاص و يا اينترنت را فراهم می نمايند . اتصالات فوق ممكن است از نوع سريال و يا هر تعداد ديگر از اينترفيس های WAN باشند . در زمان استفاده از برخی اينترفيس های WAN ، به يك دستگاه خارجی نظير CSU به منظور اتصال روتر به اتصال محلی ‌ارائه دهنده سرويس نياز می باشد . در برخی ديگر از اتصالات WAN ، ممكن است ‌روتر مستقيما" به ارائه دهنده سرويس متصل گردد .
اينترفيس های كنسول و كمكی : عملكرد پورت های مديريتی متفاوت از ساير اتصالات است . اتصالات LAN و WAN ،‌ مسوليت ايجاد اتصالات شبكه ای به منظور ارسال فريم ها را برعهده دارند ولی پورت های مديريتی يك اتصال مبتنی بر متن به منظور پيكربندی و اشكال زدائی روتر را ارائه می نمايند . پورت های كمكی ( auxilliary ) و كنسول (console ) دو نمونه متداول از پورت های مديريت روتر می باشند . اين نوع پورت ها ، از نوع پورت های سريال غيرهمزمان EIA-232 می باشند كه به يك پورت ارتباطی كامپيوتر متصل می گردند . در چنين مواردی از يك برنامه شبيه ساز ترمينال بر روی كامپيوتر به منظور ايجاد يك ارتباط مبتنی بر متن با روتر استفاده می گردد . مديران شبكه می توانند با استفاده از ارتباط ايجاد شده مديريت و پيكربندی دستگاه مورد نظر را انجام دهند .
شكل زير انواع اتصالات يك روتر را نشان می دهد .

پيكربندی‌ روتر پيكربندی‌ روتر با استفاده از پورت های مديريت :
پورت های كنسول و كمكی به منزله پورت های مديريتی می باشند كه از آنان به منظور مديريت و پيكربندی روتر استفاده می گردد . اين نوع پورت های سريال غيرهمزمان به عنوان پورت های شبكه ای طراحی نشده اند . برای پيكريندی اوليه روتر از يكی از پورت های فوق استفاده می گردد . معمولا" برای پيكريندی اوليه ، استفاده از پورت كنسول توصيه می گردد چراكه تمامی روترها ممكن است دارای يك پورت كمكی نباشند .
زمانی كه روتر برای اولين مرتبه وارد مدار و يا سرويس می گردد ، با توجه به عدم وجود پارامترهای پيكربندی شده ،‌ امكان برقراری ارتباط با هيچ شبكه ای وجود نخواهد داشت . برای پيكربندی و راه اندازی اوليه روتر ، می توان از يك ترمينال و يا كامپيوتر كه به پورت كنسول روتر متصل می گردد، استفاده نمود . پس از اتصال كامپيوتر به روتر ، می توان با استفاده از دستورات پيكربندی ، تنظيمات مربوطه را انجام داد . پس از پيكربندی روتر با استفاده از پورت كنسول و يا كمكی ، زمينه اتصال روتر به شبكه به منظور اشكال زدائی و يا مانيتورينگ* فراهم می گردد. ***مانيتورينگ
مانیتورینگ مدیریت را بر روی شبکه را بالا می برد.
امکانات مانیتورینگ به مدیر شبکه:
كدام سرويس موجود در شبكه بيشتر مورد استفاده قرار مي گيرد .
پركارترين كاربر شبكه چه كسي است .
در چه اوقاتي از روز ميزان فعاليت در شبكه بيشتر است.
سايت هاي مورد علاقه كاربران شبكه چه سايت هايي مي باشند.
آيا ميزان ترافيك شبكه (ورودي-خروجي) در حد ظرفيت تعريف شده شبكه است.
آيا ISPيي كه ما از آن خدمات گرفته‌ايم، به اندازه پول ما پهناي باند به ما مي دهد .
آيا الگوي لحاظ شده براي شبكه با آنچه كه ما انتظار داشتيم، يكسان است.
بخش هاي مهم در زمان مانيتورينگ شبكه:
مانيتورينگ وضعيت سلامت شبكه:
دماي CPU، سرعت فن ، ولتاژ سيستم
شناسايي منبع تغذيه هاي نيم سوز (بر اساس ولتاژ توليدي آنها)
ميزان استفاده از حافظه

مانيتورينگ اينترنت :
پهناي باند مورد استفاده توسط كاربران
فعاليت هاي Proxy Server
پيدا كردن 100 سايت اول پربازديد توسط كاربران شبكه
ميزان درخواست هاي ورودي به DNS SERVER
آماده به كار بودن سرويس هاي حياتي سيستم مانند web server , Mail server
مدت زمان PING و درصد از دست دادن بسته ها Packet loss

مانيتورينگ شبكه داخلي :
بررسي noise ، نرخ انتقال داده و سيگنال در شبكه هاي بي سيم
ميزان خرابي داده ها يا از بين رفتن Packet ها
كنترل ميزان Broadcast هاي شبكه
ميزان پهناي باند مصرفي توسط پروتكل هاي شبكه
ميزان پهناي باند مصرفي توسط هز پورت در يك سويچ

نحوه اتصال به پورت كنسول روتر
برای اتصال كامپيوتر به پورت كنسول روتر ، به يك كابل rollover و يك آداپتور RJ-45 to DB-9 نياز می باشد . روترهای سيسكو به همراه آداپتورهای مورد نياز برای اتصال به پورت كنسول ارائه می گردند . كامپيوتر و يا ترمينال می بايست قادر به حمايت از شبيه سازی ترمينال VT100 باشند. در اين رابطه از نرم افزارهای شبيه ساز ترمينال نظير HyperTerminal استفاده می‌گردد .
برای اتصال كامپيوتر به روتر می بايست مراحل زير را دنبال نمود :
پيكربندی نرم افزار شبيه سازی ترمينال بر روی كامپيوتر ( انتخاب شماره پورت مناسب و ... )
اتصال كانكتور RJ-45 كابل rollover به پورت كنسول روتر
اتصال سر ديگر كابل rollover به آداپتور RJ-45 to DB-9
اتصال آداپتور DB-9 به كامپيوتر
شكل زير نحوه اتصال كامپيوتر به روتر را با استفاده از يك كابل rollover نشان می دهد :‌

اتصال كامپيوتر به روتر
برای مديريت و پيكربندی از راه دور روتر ،‌ می توان يك مودم را به پورت كنسول و يا كمكی روتر متصل نمود . شكل زير نحوه اتصال روتر به يك مودم را نشان می دهد :

ارتباط با روتر از طريق مودم
به منظور اشكال زدائی روتر، استفاده از پورت كنسول نسبت به پورت كمكی ترجيح داده می شود . در زمان استفاده از پورت كنسول به صورت پيش فرض پيام های خطاء ، اشكال زدائی و راه اندازی نمايش داده می‌ شوند. از پورت كنسول در مواردی كه سرويس های شبكه فعال نشده و يا با مشكل مواجه شده اند نيز می توان استفاده نمود . بنابراين پورت كنسول گزينه ای مناسب برای بازيافت رمز عبور و ساير مشكلات غيرقابل پيش بينی می باشد .
اتصال اينترفيس های LAN
در اكثر محيط های LAN ، روتر با استفاده از يك اينترفيس Ethernet و يا Fast Ethernet به شبكه متصل می گردد . در چنين مواردی روتر همانند يك ميزبان است كه با شبكه LAN از طريق يك هاب و يا سوئيچ ارتباط برقرار می نمايد . به منظور ايجاد اتصال از يك كابل straight-through استفاده می گردد . دربرخی موارد، اتصال اترنت روتر مستقيما"به كامپيوتر و يا روتر ديگری متصل می گردد . در چنين مواردی از يك كابل Crossover استفاده می گردد .
در صورت عدم استفاده صحيح از اينترفيس ها ، ممكن است روتر و يا ساير تجهيزات شبكه ای با مشكل مواجه گردند .
اتصال اينترفيس های WAN
اتصالات WAN دارای انواع مختلفی بوده و از تكنولوژی های متفاوتی استفاده می نمايند. سرويس های WAN معمولا" از ارائه دهندگان سرويس اجاره می گردد .خطوط leased و يا packet-switched نمونه هائی از انواع متفاوت اتصالات WAN می باشند .
برای هر يك از انواع سرويس های WAN ، دستگاه مشتری ( اغلب يك روتر است ) به منزله يك DTE ( برگرفته از data terminal equipment ) رفتار می نمايد . پايانه فوق با استفاده از يك دستگاه DCE ( برگرفته از data circuit-terminating equipment) كه معمولا" يك مودم و يا CSU/DSU ( برگرفته از channel service unit/data service unit ) می باشد به ارائه دهنده سرويس متصل می گردد . از دستگاه فوق برای تبديل داده از DTE به يك شكل قابل قبول برای ارائه دهنده سرويس WAN ، استفاده می گردد .

استفاده از اينترفيس WAN
اينترفيس های سريال ، متداولترين اينترفيس استفاده شده در روتر برای سرويس های WAN می باشند . برای انتخاب كابل سريال مناسب، بررسی موارد زير پيشنهاد می گردد :
نوع اينترفيس : روترهای سيسكو ممكن است از كانكتورهای متفاوتی برای اينترفيس های سريال استفاده نمايند . مثلا" در برخی روترها از اينترفيس های سريال smart و يا يك اتصال DB-60 استفاده می گردد .
نوع اتصال شبكه : آيا شبكه به يك دستگاه DCE و يا DTE متصل است ؟ DCE و DTE دو نوع اينترفيس سريال می باشند كه دستگاه ها از آنان به منظور ارتباط با يكديگر استفاده می نمايند . ارائه سيگنال كلاك برای مبادله اطلاعات بر روی گذرگاه، مهمترين ويژگی دستگاه های ‍ DTE محسوب می گردد .
نوع سيگنالينگ : برای هر دستگاه می توان از يك استاندارد سريال متفاوت استفاده نمود . هر استاندارد، سيگنال های موجود بر روی كابل را تعريف و نوع كانكتورهای دو سر كابل را مشخص می نمايد .
نوع كانكتور : برای استفاده از كابل به چه نوع كانكتورهائی نياز می باشد ؟
همانگونه که گفته شد روترهاي Cisco نسبت به ساير روترها قابليت انعطاف پذيري بيشتري داشته و ماژول هاي مختلفي مي توان بر روي آنها نصب کرد و به منظورهاي مختلف از آنها استفاده نمود. از ميان انواع ماژولهايي که مي توان بر روي روترهاي Cisco نصب کرد مي توان به موارد زير اشاره کرد :
NM16AM: ماژول Data براي 16 خط تلفن به همراه 16 مودم Internal با سرعت 56Kb/s مي باشد.
NM32A: ماژول Data براي 32 خط تلفن بدون مودم Internal مي باشد. اگر از اين ماژول استفاده شود بايد 32 مودم External به روتر وصل شود.
NM16A: ماژول Data براي 16 خط تلفن بدون مودم Internal مي باشد. اگر از اين ماژول استفاده شود بايد 16 مودم External به روتر وصل شود.
NM-HDV-2E1 : بوسيله اين ماژول 2 خط E1 را مي توان به روتر متصل کرد.
NM-HDV-1E1 : بوسيله اين ماژول مي توان 1 خط E1 به روتر متصل کرد.
NM-HDV-1E1e : همانند NM-HDV-1E1 بوده با اين تفاوت که DSP Proccessor آن قوي تر است.
NM-HDV-1T1 : بوسيله اين ماژول مي توان 1 خط T1 به روتر متصل کرد.
NM-HDV-2T1 : بوسيله اين ماژول مي توان 2 خط T1 به روتر متصل کرد.
NM-2V : ماژولي است که روي روتر نصب مي شود و به آن مي توان 2 کارت FXO يا FXS وصل کرد.
VIC-2FXO : بوسيله اين کارت مي توان دو خط آنالوگ معمولي را به منظور VoIP به روتر وصل کرد.
VIC-2FXS : همانند FXO بوده با اين تفاوت که به ماژول FXO خطوط تلفن شهري (PSTN) وصل مي شود اما به ماژول FXS مستقيما" گوشي تلفن وصل مي شود.
RAM : روترها هم مثل کامپيوترها داراي Ram مخصوصي بصورت ماژول در ظرفيتهاي 8 , 16 و 32 و ... مگابايتي مي باشند.
Flash FLASH : در حقيقت به منزله يک Hard Disk کوچک براي روترها بوده و ظرفيت آن پايين است. Flash و Ram هردو بر روي Board اصلي روتر سوار مي شوند.
NM-1FE2W : ماژولي است که معمولا" روي روترهاي سري 3600 نصب مي شود و يک پورت Fast Ethernet و دو پورت WAN (سريال) به روتر اضافه مي کند. (البته کارت WIC1T يا WIC2T هم لازم است)
NM-2FE2W : ماژولي است که معمولا" روي روترهاي سري 3600 نصب مي شود و دو پورت Fast Ethernet و دو پورت WAN (سريال) به روتر اضافه مي کند. (البته کارت WIC1T يا WIC2T هم لازم است)
WIC1T : با اتصال اين کارت به روتر يک پورت سريال Wan به روتر اضافه مي شود.
WIC2T : با اتصال اين کارت به روتر دو پورت سريال Wan به روتر اضافه مي شود.
Cisco IOS : به سيستم عامل روترها IOS گفته مي شود. IOS ها براي مدلهاي مختلف Router متفاوت بوده و براي هر مدل هم داراي ورژنهاي مختلفي است.
آشنايي با سوئيچ شبكه
سوئيچ شبکه از مجموعه ای کامپيوتر ( گره ) که توسط يک محيط انتقال ( کابلی بدون کابل ) بيکديگر متصل می گردند ، تشکيل شده است. در شبکه از تجهيزات خاصی نظير هاب و روتر نيز استفاده می گردد. سوئيچ يکی از عناصر اصلی و مهم در شبکه های کامپيوتری است . با استفاده از سوئيچ ، چندين کاربرقادربه ارسال اطلاعات از طريق شبکه در يک لحظه خواهند بود. سرعت ارسال اطلاعات هر يک از کاربران بر سرعت دستيابی ساير کاربران شبکه تاثير نخواهد گذاشت . سوئيچ همانند روتر که امکان ارتباط بين چندين شبکه را فراهم می نمايد ، امکان ارتباط گره های متفاوت ( معمولا" کامپيوتر ) يک شبکه را مستقيما" با يکديگر فراهم می نمايد. شبکه ها و سوئيچ ها دارای انواع متفاوتی می باشند.. سوئيچ هائی که برای هر يک از اتصالات موجود در يک شبکه داخلی استفاده می گردند ، سوئيچ های LAN ناميده می شوند. اين نوع سوئيچ ها مجموعه ای از ارتباطات شبکه را بين صرفا" دو دستگاه که قصد ارتباط با يکديگر را دارند ، در زمان مورد نظر ايجاد می نمايد. مبانی شبکه عناصر اصلی در يک شبکه کامپيوتری بشرح زير می باشند: شبکه . شبکه شامل مجموعه ای از کامپيوترهای متصل شده (با يک روش خاص )، بمنظور تبادل اطلاعات است . گره . گره ، شامل هر چيزی که به شبکه متصل می گردد ، خواهد بود.( کامپيوتر ، چاپگر و ... ) سگمنت. سگمنت يک بخش خاص از شبکه بوده که توسط يک سوئيچ ، روتر و يا Bridge از ساير بخش ها جدا شده است . ستون فقرات . کابل اصلی که تمام سگمنت ها به آن متصل می گردند. معمولا" ستون فقرات يک شبکه دارای سرعت بمراتب بيشتری نسبت به هر يک از سگمنت های شبکه است . مثلا" ممکن است نرخ انتقال اطلاعات ستون فقرات شبکه 100 مگابيت در ثانيه بوده در صورتيکه نرخ انتقال اطلاعات هر سگمنت 10 مگابيت در ثانيه باشد. توپولوژی . روشی که هر يک از گره ها به يکديگر متصل می گردند را گويند. کارت شبکه . هر کامپيوتر از طريق يک کارت شبکه به شبکه متصل می گردد.در اکثر کامپيوترهای شخصی ، کارت فوق از نوع اترنت بوده ( دارای سرعت 10 و يا 100 مگابيت در ثانيه ) و در يکی از اسلات های موجود روی برد اصلی سيستم ، نصب خواهد شد. آدرس MAC . آدرس فيزيکی هر دستگاه ( کارت شبکه ) در شبکه است. آدرس فوق يک عدد شش بايتی بوده که سه بايت اول آن مشخص کننده سازنده کارت شبکه و سه بايت دوم ، شماره سريال کارت شبکه است . Unicast . ارسال اطلاعات توسط يک گره با آدرس خاص و دريافت اطلاعات توسط گره ديگر است . Multicast . يک گره ، اطلاعاتی را برای يک گروه خاص ( با آدرس مشخص ) ارسال می دارد.دستگاههای موجود در گروه ، اطلاعات ارسالی را دريافت خواهند کرد. Broadcast . يک گره اطلاعاتی را برای تمام گره های موجود در شبکه ارسال می نمايد. استفاده از سوئيچ در اکثر شبکه های متداول ، بمنظور اتصال گره ها از هاب استفاده می شود. همزمان با رشد شبکه ( تعداد کاربران ، تنوع نيازها ، کاربردهای جديد شبکه و ...) مشکلاتی در شبکه های فوق بوجود می آيد : - Scalability . در يک شبکه مبتنی بر هاب ، پهنای باند بصورت مشترک توسط کاربران استفاده می گردد. با توجه به محدود بودن پهنای باند ، همزمان با توسعه، کارآئی شبکه بشدت تحت تاثير قرار خواهد گرفت . برنامه های کامپيوتر که امروزه بمنظور اجراء بر روی محيط شبکه ، طراحی می گردنند به پهنای باند مناسبی نياز خواهند داشت . عدم تامين پهنای باند مورد نيازبرنامه ها ، تاثير منفی در عملکرد آنها را بدنبال خواهد داشت . -Latency . به مدت زمانی که طول خواهد کشيد تا بسته اطلاعاتی به مقصد مورد نظر خود برسد ، اطلاق می گردد. با توجه به اينکه هر گره در شبکه های مبتنی بر هاب می بايست مدت زمانی را در انتظار سپری کرده ( ممانعت از تصادم اطلاعات ) ، بموازات افزايش تعداد گره ها در شبکه ، مدت زمان فوق افزايش خواهد يافت . در اين نوع شبکه ها در صورتيکه يکی از کاربران فايل با ظرفيت بالائی را برای کاربر ديگر ارسال نمايد ، تمام کاربران ديگر می بايست در انتظاز آزاد شدن محيط انتقال بمنظور ارسال اطلاعات باشند. بهرحال افزايش مدت زمانی که يک بسته اطلاعاتی به مقصد خود برسد ، هرگز مورد نظر کاربران يک شبکه نخواهد بود. - Network Failure . در شبکه های مبتنی بر هاب ، يکی از دستگاههای متصل شده به هاب قادر به ايجاد مسائل و مشکلاتی برای ساير دستگاههای موجود در شبکه خواهد بود. عامل بروز اشکال می تواند عدم تنظيم مناسب سرعت ( مثلا" تنظيم سرعت يک هاب با قابليت 10 مگابيت در ثانيه به 100 مگابيت در ثانيه ) و يا ارسال بيش از حد بسته های اطلاعاتی از نوع Broadcast ، باشد. - Collisions . در شبکه های مبتنی بر تکنولوژی اترنت از فرآينده خاصی با نام CSMA/CD بمنظور ارتباط در شبکه استفاده می گردد. فرآيند فوق نحوه استفاده از محيط انتقال بمنظور ارسال اطلاعات را قانونمند می نمايد. در چنين شبکه هائی تا زمانيکه بر روی محيط انتقال ترافيک اطلاعاتی باشد ، گره ای ديگر قادر به ارسال اطلاعات نخواهد بود. در صورتيکه دو گره در يک لحظه اقدام به ارسال اطلاعات نمايند ، يک تصادم اطلاعاتی ايجاد و عملا" بسته های اطلاعاتی ارسالی توسط هر يک از گره ها نيز از بين خواهند رفت . هر يک از گره های مربوطه ( تصادم کننده ) می بايست بمدت زمان کاملا" تصادفی در انتظار باقی مانده و پس از فراهم شدن شرايط ارسال ، اقدام به ارسال اطلاعات مورد نظر خود نمايند. هاب مسير ارسال اطلاعات از يک گره به گره ديگر را به حداقل مقدار خود می رساند ولی عملا" شبکه را به سگمنت های گسسته تقسيم نمی نمايد. سوئيچ بمنظور تحقق خواسته فوق عرضه شده است . يکی از مهمترين تفاوت های موجود بين هاب و سوئيچ ، تفسير هر يک از پهنای باند است . تمام دستگاههای متصل شده به هاب ، پهنای باند موجود را بين خود به اشتراک می گذارند.در صورتيکه يک دستگاه متصل شده به سوئيچ ، دارای تمام پهنای باند مختص خود است. مثلا" در صورتيکه ده گره به هاب متصل شده باشند ، ( در يک شبکه ده مگابيت درثانيه) هر گره موجود در شبکه بخشی از تمام پهنای باند موجود ( ده مگابيت در ثانيه ) را اشغال خواهد کرد. ( در صورتيکه ساير گره ها نيز قصد ارتباط را داشته باشند) . در سوئيچ ، هر يک از گره ها قادر به برقراری ارتباط با ساير گره ها با سرعت ده مگابيت در ثانيه خواهد بود. در يک شبکه مبتنی بر سوئيچ ، برای هر گره يک سگمنت اختصاصی ايجاد خواهد شد. سگمنت های فوق به يک سوئيچ متصل خواهند شد. در حقيقت سوئيچ امکان حمايت از چندين ( در برخی حالات صدها ) سگمنت اختصاصی را دارا است . با توجه به اينکه تنها دستگاه های موجود در هر سگمنت سوئيچ و گره می باشند ، سوئيچ قادر به انتخاب اطلاعات ، قبل از رسيدن به ساير گره ها خواهد بود. در ادامه سوئيچ، فريم های اطلاعاتی را به سگمنت مورد نظر هدايت خواهد کرد. با توجه به اينکه هر سگمنت دارای صرفا" يک گره می باشد ، اطلاعات مورد نظر به مقصد مورد نظر ارسال خواهند شد. بدين ترتيب در شبکه های مبتنی بر سوئيچ امکان چندين مبادله اطلاعاتی بصورت همزمان وجود خواهد داشت . با استفاده از سوئيچ ، شبکه های اترنت بصورت full-duplex خواهند بود. قبل از مطرح شدن سوئيچ ، اترنت بصورت half-duplex بود. در چنين حالتی داده ها در هر لحظه امکان ارسال در يک جهت را دارا می باشند . در يک شبکه مبتنی بر سوئيچ ، هر گره صرفا" با سوئيچ ارتباط برقرار می نمايد ( گره ها مستقيما" با يکديگر ارتباط برقرار نمی نمايند) . در چنين حالتی اطلاعات از گره به سوئيچ و از سوئيچ به گره مقصد بصورت همزمان منتقل می گردند. در شبکه های مبتنی بر سوئيچ امکان استفاده از کابل های بهم تابيده و يا فيبر نوری وجود خواهد داشت . هر يک از کابل های فوق دارای کانکتورهای مربوط به خود برای ارسال و دريافت اطلاعات می باشند. با استفاده از سوئيچ ، شبکه ای عاری از تصادم اطلاعاتی بوجود خواهد آمد. انتقال دو سويه اطلاعات در شبکه های مبتنی بر سوئيچ ، سرعت ارسال و دريافت اطلاعات افزايش می يابد. اکثر شبکه های مبتنی بر سوئيچ بدليل قيمت بالای سوئيچ ، صرفا" از سوئيچ به تنهائی استفاده نمی نمايند. در اين نوع شبکه ها از ترکيب هاب و سوئيچ استفاده می گردد. مثلا" يک سازمان می تواند از چندين هاب بمنظور اتصال کامپيوترهای موجود در هر يک از دپارتمانهای خود استفاده و در ادامه با استفاده از يک سوئيچ تمام هاب ها(مربوط به هر يک از دپارتمانها) بيکديگر متصل می گردد. تکنولوژی سوئيچ ها سوئيچ ها دارای پتانسيل های لازم بمنظور تغيير روش ارتباط هر يک از گره ها با يکديگر می باشند. تفاوت سوئيچ با روتر چيست ؟ سوئيچ ها معمولا" در لايه دوم (Data layer) مدل OSI فعاليت می نمايند.در لايه فوق امکان استفاده از آدرس های MAC ( آدرس ها ی فيزيکی ) وجود دارد. روتر در لايه سوم (Network) مدل OSI فعاليت می نمايند. در لايه فوق از آدرس های IP ر IPX و يا Appeltalk استفاده می شود. ( آدرس ها ی منطقی ) . الگوريتم استفاده شده توسط سوئيچ بمنظور اتخاذ تصميم در رابطه با مقصد يک بسته اطلاعاتی با الگوريتم استفاده شده توسط روتر ، متفاوت است . يکی از موارد اختلاف الگوريتم های سوئيچ و هاب ، نحوه برخورد آنان با Broadcast است . مفهوم بسته های اطلاعاتی از نوع Broadcast در تمام شبکه ها مشابه می باشد. در چنين مواردی ، دستگاهی نياز به ارسال اطلاعات داشته ولی نمی داند که اطلاعات را برای چه کسی می بايست ارسال نمايد. بدليل عدم آگاهی و دانش نسبت به هويت دريافت کننده اطلاعات ، دستگاه مورد نظر اقدام به ارسال اطلاعات بصورت broadcast می نمايد. مثلا" هر زمان که کامپيوتر جديد ويا يکدستگاه به شبکه وارد می شود ، يک بسته اطلاعاتی از نوع Broadcast برای معرفی و حضور خود در شبکه ارسال می دارد. ساير گره ها قادر به افزودن کامپيوتر مورد نظر در ليست خود و برقراری ارتباط با آن خواهند بود. بنابراين بسته های اطلاعاتی از نوع Broadcast در موارديکه يک دستگاه نياز به معرفی خود به ساير بخش های شبکه را داشته و يا نسبت به هويت دريافت کننده اطلاعات شناخت لازم وجود نداشته باشند ، استفاده می گردند. هاب و يا سوئيچ ها قادر به ارسال بسته ای اطلاعاتی از نوع Broadcast برای ساير سگمنت های موجود در حوزه Broadcast می باشند. روتر عمليات فوق را انجام نمی دهد. در صورتيکه آدرس يکدستگاه مشخص نگردد ، روتر قادر به مسيريابی بسته اطلاعاتی مورد نظر نخواهد بود. ويژگی فوق در موارديکه قصد جداسازی شبکه ها از يکديگر مد نظر باشد ، بسيار ايده آل خواهد بود. ولی زمانيکه هدف مبادله اطلاعاتی بين بخش های متفاوت يک شبکه باشد ، مطلوب بنظر نمی آيد. سوئيچ ها با هدف برخورد با مشکل فوق عرضه شده اند. سوئيچ های LAN بر اساس تکنولوژی packet-switching فعاليت می نمايند. سوئيچ يک ارتباط بين دو سگمنت ايجاد می نمايد. بسته های اطلاعاتی اوليه در يک محل موقت ( بافر) ذخيره می گردند ، آدرس فيزيکی (MAC) موجود در هدر خوانده شده و در ادامه با ليستی از آدرس های موجود در جدول Lookup ( جستجو) مقايسه می گردد. در شبکه های LAN مبتنی بر اترنت ، هر فريم اترنت شامل يک بسته اطلاعاتی خاص است . بسته اطلاعاتی فوق شامل يک عنوان (هدر) خاص و شامل اطلاعات مربوط به آدرس فرستنده و گيرنده بسته اطلاعاتی است . سوئيچ های مبتنی بر بسته های اطلاعاتی بمنظور مسيريابی ترافيک موجود در شبکه از سه روش زير استفاده می نمايند. Cut-Through Store-and-forward Fragment-free سوئيچ های Cut-through ، بلافاصله پس از تشخيص بسته اطلاعاتی توسط سوئيچ ، آدرس MAC خوانده می شود. پس از ذخيره سازی شش بايت اطلاعات که شامل آدرس می باشند ، بلافاصله عمليات ارسال بسته های اطلاعاتی به گره مقصد آغاز می گردد. ( همزمان با دريافت ساير بسته های اطلاعاتی توسط سوئيچ ) . با توجه به عدم وجود کنترل های لازم در صورت بروز خطاء در روش فوق ، سوئيچ های زيادی از روش فوق استفاده نمی نمايند. سوئيچ های store-and-forward ، تمام بسته اطلاعاتی را در بافر مربوطه ذخيره و عمليات مربوط به بررسی خطاء ( CRC) و ساير مسائل مربوطه را قبل از ارسال اطلاعات انجام خواهند داد. در صورتيکه بسته اطلاعاتی دارای خطاء باشد ، بسته اطلاعاتی دور انداخته خواهد شد. .در غيراينصورت ، سوئيچ با استفاده از آدرس MAC ، بسته اطلاعاتی را برای گره مقصد ارسال می نمايد. اغلب سوئيچ ها از ترکيب دو روش گفته شده استفاده می نمايند. در اين نوع سوئيچ ها از روش cut-through استفاده شده و بمحض بروز خطاء از روش store-and-forward استفاده می نمايند. يکی ديگر از روش های مسيريابی ترافيک در سوئيچ ها که کمتر استفاده می گردد ، fragment-free است . روش فوق مشابه cut-through بوده با اين تفاوت که قبل از ارسال بسته اطلاعاتی 64 بايت آن ذخيره می گردد. سوئيچ های LAN دارای مدل های متفاوت از نقطه نظر طراحی فيزيکی می باشند. سه مدل رايج در حال حاضر بشرح زير می باشند: - Shared memory . اين نوع از سوئيچ ها تمام بسته های اطلاعاتی اوليه در بافر مربوط به خود را ذخيره می نمايند. بافر فوق بصورت مشترک توسط تمام پورت های سوئيچ ( اتصالات ورودی و خروجی ) استفاده می گردد. در ادامه اطلاعات مورد نظر بکمک پورت مربوطه برای گره مقصد ارسال خواهند شد. -Matrix . اين نوع از سوئيچ ها دارای يک شبکه( تور) داخلی ماتريس مانند بوده که پورت های ورودی و خروجی همديگر را قطع می نمايند. زمانيکه يک بسته اطلاعاتی بر روی پورت ورودی تشخيص داده شد ، آدرس MAC آن با جدول lookup مقايسه تا پورت مورد نظر خروجی آن مشخص گردد. در ادامه سوئيچ يک ارتباط را از طريق شبکه و در محلی که پورت ها همديگر را قطع می کنند ، برقرار می گردد. - Bus Architecture . در اين نوع از سوئيچ ها بجای استفاده از يک شبکه ( تور) ، از يک مسير انتقال داخلی ( Bus) استفاده و مسير فوق با استفاده از TDMA توسط تمام پورت ها به اشتراک گذاشته می شود. سوئيچ های فوق برای هر يک از پورت ها دارای يک حافظه اختصاصی می باشند. Transparent Bridging اکثر سوئيچ های LAN مبتنی بر اترنت از سيستم ی با نام transparent bridging برای ايجاد جداول آدرس lookup استفاده می نمايند. تکنولوژی فوق امکان يادگيری هر چيزی در رابطه با محل گره های موجود در شبکه ، بدون حمايت مديريت شبکه را فراهم می نمايد. تکنولوژی فوق داری پنج بخش متفاوت است : Learning Flooding Filtering Forwarding Aging نحوه عملکرد تکنولوژی فوق بشرح زير است : - سوئيچ به شبکه اضافه شده و تمام سگمنت ها به پورت های سوئيچ متصل خواهند شد. - گره A بر روی اولين سگمنت ( سگمنت A) ، اطلاعاتی را برای کامپيوتر ديگر ( گره B) در سگمنت ديگر ( سگمنت C) ارسال می دارد. - سوئيچ اولين بسته اطلاعاتی را از گره A دريافت می نمايد. آدرس MAC آن خوانده شده و آن را در جدول Lookup سگمنت A ذخيره می نمايد. بدين ترتيب سوئيچ از نحوه يافتن گره A آگاهی پيدا کرده و اگر در آينده گره ای قصد ارسال اطلاعات برای گره A را داشته باشد ، سوئيچ در رابطه با آدرس آن مشکلی نخواهد داشت . فرآيند فوق را Learning می گويند. - با توجه به اينکه سوئيچ دانشی نسبت به محل گره B ندارد ، يک بسته اطلاعاتی را برای تمام سگمنت های موجود در شبکه ( بجز سگمنت A که اخيرا" يکی از گره های موجود در آن اقدام به ارسال اطلاعات نموده است . ) فرآيند ارسال يک بسته اطلاعاتی توسط سوئيچ ، بمنظور يافتن يک گره خاص برای تمام سگمنت ها ، Flooding ناميده می شود. - گره B بسته اطلاعاتی را دريافت و يک بسته اطلاعاتی را بعنوان Acknowledgement برای گره A ارسال خواهد کرد. - بسته اطلاعاتی ارسالی توسط گره B به سوئيچ می رسد. در اين زمان ، سوئيچ قادر به ذخيره کردن آدرس MAC گره B در جدول Lookup سگمنت C می باشد. با توجه به اينکه سوئيچ از آدرس گره A آگاهی دارد ، بسته اطلاعاتی را مستقيما" برای آن ارسال خواهد کرد. گره A در سگمنتی متفاوت نسبت به گره B قرار دارد ، بنابراين سوئيج می بايست بمنظور ارسال بسته اطلاعاتی دو سگمنت را به يکديگر متصل نمائيد. فرآيند فوق Forwarding ناميده می شود. - در ادامه بسته اطلاعاتی بعدی از گره A بمنظور ارسال برای گره B به سوئيچ می رسد ، با توجه به اينکه سوئيج از آدرس گره B آگاهی دارد ، بسته اطلاعاتی فوق مستقيما" برای گره B ارسال خواهد شد. - گره C اطلاعاتی را از طريق سوئيچ برای گره A ارسال می دارد. سوئيچ آدرس MAC گره C را در جدول Lookup سگمنت A ذخيره می نمايد ، سوئيچ آدرس گره A را دانسته و مشخص می گردد که دو گره A و C در يک سگمنت قرار دارند. بنابراين نيازی به ارتباط سگمنت A با سگمنت ديگر بمنظور ارسال اطلاعات گره C نخواهد بود. بدين ترتيب سوئيچ از حرکت بسته های اطلاعاتی بين گره های موجود در يک سگمنت ممانعت می نمايد. فرآيند فوق را Filtering می گويند. - Learning و Flooding ادامه يافته و بموازات آن سوئيچ ، آدرس های MAC مربوط به گره ها را در جداول Lookup ذخيره می نمايد. اکثر سوئيچ ها دارای حافظه کافی بمنظور ذخيره سازی جداول Lookup می باشند. بمنظور بهينه سازی حافظه فوق ، اطلاعات قديمی تر از جداول فوق حذف تا فرآيند جستجو و يافتن آدرس ها در يک زمان معقول و سريعتر انجام پذيرد. بذين منظور سوئيج ها از روشی با نام aging استفاده می نمايند. زمانيکه يک Entry برای يک گره در جدول Lookup اضافه می گردد ، به آن يک زمان خاص نسبت داده می شود. هر زمان که بسته ای اطلاعاتی از طريق يک گره دريافت می گردد ، زمان مورد نظر بهنگام می گردد. سوئيچ دارای يک يک تايمر قابل پيکربندی بوده که با عث می شود، Entry های موجود در جدول Lookup که مدت زمان خاصی از آنها استفاده نشده و يا به آنها مراجعه ای نشده است ، حذف گردند . با حذف Entry های غيرضروری ، حافظه قابل استفاده برای ساير Entry ها بيشتر می گردد. در مثال فوق ، دو گره سگمنت A را به اشتراک گذاشته و سگمنت های A و D بصورت مستقل می باشند. در شبکه های ايده آل مبتنی بر سوئيچ ، هر گره دارای سگمنت اختصاصی مربوط بخود است . بدين ترتيب امکان تصادم حذف و نيازی به عمليات Filtering نخواهد بود. فراوانی و آشفتگی انتشار در شبکه های با توپولوژی ستاره (Star) و يا ترکيب Bus و وStar يکی از عناصر اصلی شبکه که می تواند باعث از کار افتادن شبکه گردد ، هاب و يا سوئيچ است . Spanning tress بمنظوری پيشگيری از مسئله " آشفتگی انتشار" و ساير اثرات جانبی در رابطه با Looping شرکت DEC پروتکلی با نام STP)Spanning-tree Protocol) را ايجاد نموده است . پروتکل فوق با مشخصه 802.1d توسط موسسه IEEE استاندارد شده است . Spanning tree از الگوريتم STA(Spanning-tree algoritm) استفاده می نمايد. الگوريتم فوق بررسی خواهد کرد آيا يک سوئيچ دارای بيش از يک مسير برای دستيابی به يک گره خاص است . در صورت وجود مسيرهای متعدد ، بهترين مسير نسبت به ساير مسيرها کدام است ؟ نحوه عمليات STP بشرح زير است : - به هر سوئيج ، مجموعه ای از مشخصه ها (ID) نسبت داده می شود. يکی از مشخصه ها برای سوئيچ و ساير مشخصه ها برای هر يک از پورت ها استفاده می گردد. مشخصه سوئيچ ، BID)Bridge ID) ناميده شده و دارای هشت بايت است . دو بايت بمنظور مشخص نمودن اولويت و شش بايت برای مشخص کردن آدرس MAC استفاده می گردد. مشخصه پورت ها ، شانزده بيتی است . شش بيت بمنظور تنظيمات مربوط به اولويت و ده بيت ديگر برای اختصاص يک شماره برا ی پورت مورد نظر است . - برای هر مسير يک Path Cost محاسبه می گردد. نحوه محاسبه پارامتر فوق بر اساس استانداردهای ارائه شده توسط موسسه IEEE است . بمنظور محاسبه مقادر فوق ، 1.000 مگابيت در ثانيه ( يک گيگابيت در ثانيه ) را بر پهنای باند سگمنت متصل شده به پورت ، تقسيم می نمايند. بنابراين يک اتصال 10 مگابيت در ثانيه ، دارای Cost به ميزان 100 است (1.000 تفسيم بر 10 ) . بمنظور هماهنگ شدن با افزايش سرعت شبکه های کامپيوتری استاندارد Cost نيز اصلاح می گردد. جدول زير مقادير جديد STP Cost را نشان می دهد. ( مقدار Path cost می تواند يک مقدار دلخواه بوده که توسط مديريت شبکه تعريف و مشخص می گردد ) - هر سوئيچ فرآيندی را بمنظور انتخاب مسيرهای شبکه که می بايست توسط هر يک از سگمنت ها استفاده گردد ، آغاز می نمايند. اطلاعات فوق توسط ساير سوئيچ ها و با استفاده از يک پروتکل خاص با نام BPUD)Bridge protocol data units) به اشتراک گذاشته می شود. ساختار يک BPUDبشرح زير است : ● Root BID . پارامتر فوق BID مربوط به Root Bridge جاری را مشخص می کند. ● Path Cost to Bridge . مسافت root bridge را مشخص می نمايد. مثلا" در صورتيکه داده از طريق طی نمودن سه سگمنت با سرعتی معادل 100 مگابيت در ثانيه برای رسيدن به Root bridge باشد ، مقدار cost بصورت (19+19+0=38) بدست می آيد. سگمنتی که به Root Bridge متصل است دارای Cost معادل صفر است . ●Sender BID . مشخصه BID سوئيچ ارسال کننده BPDU را مشخص می کند. ●Port ID . پورت ارسال کننده BPDU مربوط به سوئيچ را مشخص می نمايد. تمام سوئيج ها بمنظور مشخص نمودن بهترين مسير بين سگمنت های متفاوت ، بصورت پيوسته برای يکديگر BPDUارسال می نمايند. زمانيکه سوئيچی يک BPDU را (از سوئيچ ديگر) دريافت می دارد که مناسبتر از آن چيزی است که خود برای ارسال اطلاعات در همان سگمنت استفاده کرده است ، BPDU خود را متوقف ( به ساير سگمنت ها اراسال نمی نمايد ) و از BPDU ساير سوئيچ ها بمنظور دستيابی به سگمنت ها استفاده خواهد کرد. - يک Root bridge بر اساس فرآيندهای BPDU بين سوئيج ها ، انتخاب می گردد. در ابتدا هر سوئيج خود را بعنوان Root در نظر می گيرد. زمانيکه يک سوئيچ برای اولين بار به شبکه متصل می گردد ، يک BPDU را بهمراه BID خود که بعنوان Root BID است ، ارسال می نمايد. زمانيکه ساير سوئيچ ها BPDU را دريافت می دارند ، آن را با BID مربوطه ای که بعنوان Root BID ذخيره نموده اند، مقايسه می نمايند. در صورتيکه Root BID جديد دارای يک مقدار کمتر باشد ، تمام سوئيچ ها آن را با آنچيزی که قبلا" ذخيره کرده اند، جايگزين می نمايند. در صورتيکه Root BID ذخيره شده دارای مقدار کمتری باشد ، يک BPDU برای سوئيچ جديد بهمراه BID مربوط به Root BID ارسال می گردد. زمانيکه سوئيچ جديد BPDU را دريافت می دارد ، از Root بودن خود صرفنظر و مقدار ارسالی را بعنوان Root BID در جدول مربوط به خود ذخيره خواهد کرد. - با توجه به محل Root Bridge ، ساير سوئيچ ها مشخص خواهند کرد که کداميک از پورت های آنها دارای کوتاهترين مسير به Root Bridge است . پورت های فوق، Root Ports ناميده شده و هر سوئيج می بايست دارای يک نمونه باشد. - سوئيچ ها مشخص خواهند کرد که چه کسی دارای پورت های designated است . پورت فوق ، اتصالی است که توسط آن بسته های اطلاعاتی برای يک سگمنت خاص ارسال و يا از آن دريافت خواهند شد. با داشتن صرفا" يک نمونه از پورت های فوق ، تمام مشکلات مربوط به Looping برطرف خواهد شد. - پورت های designated بر اساس کوتاهترتن مسير بين يک سگمنت تا root bridge انتخاب می گردند. با توجه به اينکه Root bridge دارای مقدار صفر برای path cost است ، هر پورت آن بمنزله يک پورت designated است . ( مشروط به اتصال پورت مورد نظر به سسگمنت ) برای ساير سوئيچ ها، Path Cost برای يک سگمنت بررسی می گردد. در صورتيکه پورتی دارای پايين ترين path cost باشد ، پورت فوق بمنزله پورت designated سگمنت مورد نظر خواهد بود. در صورتيکه دو و يا بيش از دو پورت دارای مقادير يکسان path cost باشند ، سوئيچ با مقادر کمتر BID اتخاب می گردد. - پس از انتخاب پورت designatedبرای سگمنت شبکه ، ساير پورت های متصل شده به سگمنت مورد نظر بعنوان non -designated port در نظر گرفته خواهند شد. بنابراين با استفاده از پورت های designated می توان به يک سگمنت متصل گرديد. هر سوئيچ دارای جدول BPDU مربوط به خود بوده که بصورت خودکار بهنگام خواهد شد. بدين ترتيب شبکه بصورت يک spanning tree بوده که roor bridge که بمنزله ريشه و ساير سوئيچ ها بمنزله برگ خواهند بود. هر سوئيچ با استفاده از Root Ports قادر به ارتباط با root bridge بوده و با استفاده از پورت های designated قادر به ارتباط با هر سگمنت خواهد بود. روترها و سوئيچينگ لايه سوم همانگونه که قبلا" اشاره گرديد ، اکثر سوئيچ ها در لايه دوم مدل OSI فعاليت می نمايند (Data Layer) . اخيرا" برخی از توليدکنندگان سوييچ، مدلی را عرضه نموده اند که قادر به فعاليت در لايه سوم مدل OSI است . (Network Layer) . اين نوع سوئيچ ها دارای شباهت زيادی با روتر می باشند. زمانيکه روتر يک بسته اطلاعاتی را دريافت می نمايد ، در لايه سوم بدنبال آدرس های مبداء و مقصد گشته تا مسير مربوط به بسته اطلاعاتی را مشخص نمايد. سوئيچ های استاندارد از آدرس های MAC بمنظور مشخص کردن آدرس مبداء و مقصد استفاده می نمايند.( از طريق لايه دوم) مهمترين تفاوت بين يک روتر و يک سوئيچ لايه سوم ، استفاده سوئيچ های لايه سوم از سخت افزارهای بهينه بمنظور ارسال داده با سرعت مطلوب نظير سوئيچ های لايه دوم است. نحوه تصميم گيری آنها در رابطه با مسيريابی بسته های اطلاعاتی مشابه روتر است . در يک محيط شبکه ای LAN ، سوئيچ های لايه سوم معمولا" دارای سرعتی بيشتر از روتر می باشند. علت اين امر استفاده از سخت افزارهای سوئيچينگ در اين نوع سوئيچ ها است . اغلب سوئيچ های لايه سوم شرکت سيسکو، بمنزله روترهائی می باشند که بمراتب از روتر ها سريعتر بوده ( با توجه به استفاده از سخت افزارهای اختصاصی سوئيچينگ ) و دارای قيمت ارزانتری نسبت به روتر می باشند. نحوه Pattern matching و caching در سوئيچ های لايه سوم مشابه يک روتر است . در هر دو دستگاه از يک پروتکل روتينگ و جدول روتينگ، بمنظور مشخص نمودن بهترين مسير استفاده می گردد. سوئيچ های لايه سوم قادر به برنامه ريزی مجدد سخت افزار بصورت پويا و با استفاده از اطلاعات روتينگ لايه سوم می باشند و همين امر باعث سرعت بالای پردازش بسته های اطلاعاتی می گردد. سوئيچ های لايه سوم ، از اطلاعات دريافت شده توسط پروتکل روتينگ بمنظور بهنگام سازی جداول مربوط به Caching استفاده می نمايند. همانگونه که ملاحظه گرديد ، در طراحی سوئيچ های LAN از تکنولوژی های متفاوتی استفاده می گردد. نوع سوئيچ استفاده شده ، تاثير مستقيم بر سرعت و کيفيت يک شبکه را بدنبال خواهد داشت .

استفاده از تمامی مطالب سایت تنها با ذکر منبع آن به نام سایت علمی نخبگان جوان و ذکر آدرس سایت مجاز است

استفاده از نام و برند نخبگان جوان به هر نحو توسط سایر سایت ها ممنوع بوده و پیگرد قانونی دارد