توجه ! این یک نسخه آرشیو شده میباشد و در این حالت شما عکسی را مشاهده نمیکنید برای مشاهده کامل متن و عکسها بر روی لینک مقابل کلیک کنید : هندسه
hoora
12th March 2010, 11:33 PM
هندسه مطالعه انواع مختلف اشکال و خصوصیات آنهاست. همچنین مطالعه ارتباط میان اشکال ، زوایا و فواصـل است.
تاریخچه هندسه
http://daneshnameh.roshd.ir/mavara/img/daneshnameh_up/a/a4/geometry-1.gif
واژه انگلیسی Geometry ( هندسه ) از زبان یونانی ریشه گرفته است. این کلمه از دو کلمه «جئو»ٍ به معنای زمین و «متری» به معنای اندازه گیری تشکیل شده است.بنابراین هندسه اندازه گیری زمین است. مصریان اولیه نخستین کسانی بودند که اصول هندسه را کشف کردند. هر سال رودخانة نیل طغیان نموده و نواحی اطراف رودخانه راسیل فرا میگرفت.
این عمل تمام علایم مرزی میان تقسیمات مختلف را از بین میبرد و لازم میشد دوباره هر کس زمین خود را اندازهگیری و مرزبندی نماید. آنها روشی از علامتگذاری زمینها با کمک پایهها و طنابها اختراع کردند. آنها پایهای را در نقطهای مناسب در زمین فرو میکردند، پایه دیگری در جایی دیگر نصب میشد و دو پایه توسط طنابی که مرز را مشخص میساخت به یکدیگر متصل میشدند.با دو پایه دیگر زمین محصور شده ، محلی برای کشت یا ساختمان سازی میگشت.
با برآمدن یونانیان اطلاعات ریاضی قدم به مرحله ای علمی گذاشت.در آغاز تمام اصول هندسی ابتدایی بود. اما در سال 600 قبل از میلاد مسیح ، یک آموزگار یونانی به نام تالس، اصول هندسی را از لحاظ علمی ثابت کرد.
تالسدلایل ثبوت برخی از فرضیهها را کشف کرد و آغازگر هندسة تشریحی بود. اما دانشمندی به نام اقلیدس که در اسکندریه زندگی میکرد ، هندسه را به صورت یک علم بیان نمود.
وی حدود سال 300 قبل از میلاد مسیح ، تمام نتایج هندسی را که تا به حال شناخته بود ، گرد آورد و آنها را به طور منظم ، در یک مجموعة 13 جلدی قرار داد. این کتابها که اصول هندسه نام داشتند ، به مدت 2 هزار سال در سراسر دنیا برای مطالعه هندسه به کار می رفتند.
براساس این قوانین ، هندسه اقلیدسی تکامل یافت. هر چه زمان می گذشت ، شاخه های دیگری از هندسه توسط ریاضیدانان مختلف ، توسعه می یافت.
امروزه در بررسی علم هندسه انواع مختلف این علم را نظیر هندسة تحلیلی و مثلثات، هندسه غیر اقلیدسی و هندسه فضایی مطالعه می کنیم.
خدمت بزرگی که یونانیان در پیشرفت ریاضیات انجام دادند این بود که آنان احکام ریاضی را به جای تجربه بر استدلال منطقی استوار کردند.قبل از اقلیدس، فیثاغورث( 572-500 ق.م ) و زنون ( 490 ق.م. ) نیز به پیشرفت علم ریاضی خدمت بسیار کرده بودند.
در قرن دوم قبل از میلاد ریاضیدانی به نام هیپارک، مثلثات را اختراع کرد. وی نخستین کسی بود که تقسیم بندی معمولی بابلی ها را برای پیرامون دایره پذیرفت.به این معنی که دایره را به 360 درجه و درجه را به 60 دقیقه و دقیقه را به 60 قسمت برابر تقسیم نمود و جدولی براساس شعاع دایره به دست آورد که وترهای بعضی قوسها را به دست می داد و این قدیمی ترین جدول مثلثاتی است که تاکنون شناخته شده است.
بعد از آن دانشمندان هندی موجب پیشرفت علم ریاضی شدند. در قرن پنجم میلادی آپاستامبا، در قرن ششم ، آریاب هاتا ، در قرن هفتم ،براهماگوپتا و در قرن نهم ،بهاسکارا در پیشرفت علم ریاضی بسیار مؤثر بودند.
.................................................. ......
کلاسبندی هندسه
هنـدسه مقـدماتی به دو شاخه تقسیـم می گردد :
هنـدسه مسطحه
هندسه فضایی
در هندسه مسطحه ، اشکالی مورد مطالعه قرار میگیرند که فقط دو بعد دارند، هندسه فضایی ، مطالعه اشکال هندسی سه بعدی است. این بخش از هندسه در مورد اشکال سه بعدی چون مکعب ها ،استوانه ها، مخروط ها، کره ها و غیره است.
در هندسه مدرن شاخههای زیر مورد مطالعه قرار میگیرند:
هندسه تحلیلی
هندسه برداری
هندسه دیفرانسیل
هندسه جبری
هندسه محاسباتی
هندسه اعداد صحیح
هندسه اقلیدسی
هندسه نااقلیدسی
هندسه تصویری
هندسه ریمانی
هندسه ناجابجایی
هندسه هذلولوی
hoora
12th March 2010, 11:35 PM
هندسه نااقليدسى و نسبيت عام اينشتين (http://4tmu.ir/forum/index.php?topic=3058.msg13031#msg13031)
در قرن نوزدهم دو رياضيدان بزرگ به نام «لباچفسكى» و «ريمان» دو نظام هندسى را صورت بندى كردند كه هندسه را از سيطره اقليدس خارج مى كرد. صورت بندى «اقليدس» از هندسه تا قرن نوزدهم پررونق ترين كالاى فكرى بود و پنداشته مى شد كه نظام اقليدس يگانه نظامى است كه امكان پذير است. اين نظام بى چون و چرا توصيفى درست از جهان انگاشته مى شد. هندسه اقليدسى مدلى براى ساختار نظريه هاى علمى بود و نيوتن و ديگر دانشمندان از آن پيروى مى كردند. هندسه اقليدسى بر پنج اصل موضوعه استوار است و قضاياى هندسه با توجه به اين پنج اصل اثبات مى شوند. اصل موضوعه پنجم اقليدس مى گويد: «به ازاى هر خط و نقطه اى خارج آن خط، يك خط و تنها يك خط به موازات آن خط مفروض مى تواند از آن نقطه عبور كند.»
هندسه «لباچفسكى» و هندسه «ريمانى» اين اصل موضوعه پنجم را مورد ترديد قرار دادند. در هندسه «ريمانى» ممكن است خط صافى كه موازى خط مفروض باشد از نقطه مورد نظر عبور نكند و در هندسه «لباچفسكى» ممكن است بيش از يك خط از آن نقطه عبور كند. با اندكى تسامح مى توان گفت اين دو هندسه منحنى وار هستند. بدين معنا كه كوتاه ترين فاصله بين دو نقطه يك منحنى است.
هندسه اقليدسى فضايى را مفروض مى گيرد كه هيچ گونه خميدگى و انحنا ندارد. اما نظام هندسى لباچفسكى و ريمانى اين خميدگى را مفروض مى گيرند. (مانند سطح يك كره) همچنين در هندسه هاى نااقليدسى جمع زواياى مثلث برابر با 180 درجه نيست. (در هندسه اقليدسى جمع زواياى مثلث برابر با 180 درجه است.) ظهور اين هندسه هاى عجيب و غريب براى رياضيدانان جالب توجه بود اما اهميت آنها وقتى روشن شد كه نسبيت عام اينشتين توسط بيشتر فيزيكدانان به عنوان جايگزينى براى نظريه نيوتن از مكان، زمان و گرانش پذيرفته شد. چون صورت بندى نسبيت عام اينشتين مبتنى بر هندسه «ريمانى» است. در اين نظريه هندسه زمان و مكان به جاى آن كه صاف باشد منحنى است.
نظريه نسبيت خاص اينشتين تمايز آشكارى ميان رياضيات محض و رياضيات كاربردى است. هندسه محض مطالعه سيستم هاى رياضى مختلف است كه به وسيله نظام هاى اصول موضوعه متفاوتى توصيف شده اند. برخى از آنها چندبعدى و يا حتى nبعدى هستند. اما هندسه محض انتزاعى است و هيچ ربطى با جهان مادى ندارد يعنى فقط به روابط مفاهيم رياضى با همديگر، بدون ارجاع به تجربه مى پردازد. هندسه كاربردى، كاربرد رياضيات در واقعيت است. هندسه كاربردى به وسيله تجربه فراگرفته مى شود و مفاهيم انتزاعى برحسب عناصرى تفسير مى شوند كه بازتاب جهان تجربه اند. نظريه نسبيت، تفسيرى منسجم از مفهوم حركت، زمان و مكان به ما مى دهد. اينشتين براى تبيين حركت نور از هندسه نااقليدسى استفاده كرد. بدين منظور هندسه «ريمانى» را برگزيد.
هندسه اقليدسى براى دستگاهى مشتمل بر خط هاى راست در يك صفحه طرح ريزى شده است اما در عالم واقع يك چنين خط هاى راستى وجود ندارد. اينشتين معتقد بود امور واقع هندسه ريمانى را اقتضا كرده اند. نور بر اثر ميدان هاى گرانشى خميده شده و به صورت منحنى در مى آيد يعنى سير نور مستقيم نيست بلكه به صورت منحنى ها و دايره هاى عظيمى است كه سطح كرات آنها را پديد آورده اند. نور به سبب ميدان هاى گرانشى كه بر اثر اجرام آسمانى پديد مى آيد خط سيرى منحنى دارد. براساس نسبيت عام نور در راستاى كوتاه ترين خطوط بين نقاط حركت مى كند اما گاهى اين خطوط منحنى هستند چون حضور ماده موجب انحنا در مكان - زمان مى شود.
در نظريه نسبيت عام گرانش يك نيرو نيست بلكه نامى است كه ما به اثر انحناى زمان _ مكان بر حركت اشيا اطلاق مى كنيم. آزمون هاى عملى ثابت كردند كه شالوده عالم نااقليدسى است و شايد نظريه نسبيت عام بهترين راهنمايى باشد كه ما با آن مى توانيم اشيا را مشاهده كنيم. اما مدافعين هندسه اقليدسى معتقد بودند كه به وسيله آزمايش نمى توان تصميم گرفت كه ساختار هندسى جهان اقليدسى است يا نااقليدسى. چون مى توان نيروهايى به سيستم مبتنى بر هندسه اقليدسى اضافه كرد به طورى كه شبيه اثرات ساختار نااقليدسى باشد. نيروهايى كه اندازه گيرى هاى ما از طول و زمان را چنان تغيير دهند كه پديده هايى سازگار با زمان - مكان خميده به وجود آيد. اين نظريه به «قراردادگرايى» مشهور است كه نخستين بار از طرف رياضيدان و فيزيكدان فرانسوى «هنرى پوانكاره» ابراز شد. اما نظريه هايى كه بدين طريق به دست مى آوريم ممكن است كاملاً جعلى و موقتى باشند. اما دلايل كافى براى رد آنها وجود دارد؟
hoora
12th March 2010, 11:36 PM
هندسه مسطحه (http://4tmu.ir/forum/index.php?topic=3294.msg13914#msg13914)
هندسه مسطحه شاخهای از هندسه است که با شکلهای دو بعدی سروکار دارد. گرچه ما در دنیایی سه بعدی زندگی میکنیم مطالعه هندسه مسطحه میتواند بینش ما را نسبت به بعضی از ویژگیهای اطرافمان عمیق کند.
مفاهیم اساسی هندسه نیز،درست همان طور که مفهوم عدد از دنیایی مرئی مجرد شده است،از فرایندی تجریدی که قرنها به طول انجامیده به دست آمدهاند.
در این مورد ،با چشم پوشی از تفاوتهای غیر ذاتی، از قبیل رنگ،شکل یا ترکیب رویه ای،و عدم توجه به اختلافهای دیگر اشیای حقیقی،به صورتهای فضایی در سه بعد:طول ،عرض و ارتفاع میرسیم.
جسم فضایی سه بعد،اما رویه تنها دو بعد،خط مثلا لبه برخورد دو رویه،یک بعد و سرانجام ،نقطه،که به عنوان تقاطع دو خط در نظر گرفته میشود بعد صفر دارد.
در هندسه مسطحه صفحه را همواره به صورتی که داده شده است در نظر می گیریم،و بررسیهای هندسی را ،در حالت عمومی،در این صفحه انجام میدهیم،اما در حالتهای خاص بهتر است که فضای اقلیدسی نیز به عنوان یک شی هندسی در نظر گرفته شود.
نقطهها و خطها مفاهیم اساسی هندسه مسطحه مقدماتی اند.به طور شهودی،خط را اغلب به صورت مسیر نقطهای تعریف میکنند که در صفحه به چنان طریقی حرکت میکند که همواره کوتاهترین راه بین دو مکان خود را اختیار میکند و تغییر سو نمیدهد: با این همه ،حتی در رهیافتی دقیقتر نیز هیچ گونه تعریفی از خط و نقطه داده نمیشود اما در ریاضیات جدید رابطههای بین این دو نوع شی هندسی توسط اصل موضوعه (axiom)ها مشخص میشوند.
http://daneshnameh.roshd.ir/mavara/img/daneshnameh_up/a/af/euclid.gif
اقلیدس
hoora
12th March 2010, 11:39 PM
هندسه فضایی (http://4tmu.ir/forum/index.php?topic=3297.msg13929#msg13929)
مقدمه
هندسه فضایی به بررسی موقعیت اجسام ، اجرام و نقاط متحرک یا ساکن در فضا میپردازد، فضا مختصاتی سه بعدی دارد شامل طول ، عرض ، ارتفاع که این ابعاد را با x ، y و z در صفحه مختصات فضایی نمایش میدهیم. مهمترین مبحث در هندسه فضایی مبحث بردارها میباشند. بنابراین در هندسه فضایی به مؤلفههای برداری ، بردارهای یکه ، صفحات ، فاصلهها و ... خواهیم پرداخت.
مؤلفههای برداری و بردارهای یکه i ، k , j
بعضی از کمیات فیزیکی مانند طول و جرم اندازه پذیر هستند و توسط اندازهشان کاملا معین میشوند، این کمیات و کمیات نظیر آنها را کمیات اسکالر میگوئیم. اما کمیات دیگری وجود دارند که علاوه بر اندازه باید جهت آنها نیز مشخص باشد تا معین شوند این کمیات را کمیات برداری گوئیم. یک بردار را معمولا با پاره خطی جهتدار نمایش میدهند که جهتش نمایش جهت بردار بوده و طولش بر حسب یک واحد اختیار شده نمایش اندازهاش میباشد. دو بردار را زمانی مساوی مینامیم که از لحاظ جهت و اندازه یکسان باشند.
بهترین جبر بردارها مبتنی بر نمایش آنها بر حسب مؤلفههای موازی محورهای مختصات دکارتی است. این کار با استفاده از واحد طول یکسان بر سه محور x ، z , y صورت می گیرد و در این راه از بردارهای با طول یک در امتداد محورها به عنوان بردارهای یکه استفاده میشود که i را بردار یکه محور j ، x را بردار یکه محور y ها و k را بردار یکه محور z ها میگوئیم.
مهمترین ویژگی بردارها در فضا مانند حالتی است که در صفحه قرار دارند طول و جهت آنها است. طول بردارها با دو بار استفاده از قضیه فیثاغورس به دست میآید. اما به صورت سادهتر جهت بردار ناصفر بردار واحدی است که از تقسیم مؤلفههای آن بر طولش به دست میآید.
بردار بین دو نقطه در فضا
بیشتر اوقات لازم است که بردار بین نقاطhttp://daneshnameh.roshd.ir/mavara/img/daneshnameh/math/71dff1e526f313906e472cd2ffeb1344.png را بدست آوریم. هندسه فضایی این مشکل را برای ما حل میکند، به این ترتیب که اگر دو نقطهhttp://daneshnameh.roshd.ir/mavara/img/daneshnameh/math/5de7a00cb0e4f66908021b67cfe44678.png را برحسب مختصات فضایی که دارند بیان کنیم بردار بین این دو نقطه توسط رابطه زیر حاصل خواهد شد:
http://daneshnameh.roshd.ir/mavara/img/daneshnameh/math/e0c982281984f581dab3198a23266ddd.png
فاصله در فضا
برای یافتن فاصله بین دو نقطهhttp://daneshnameh.roshd.ir/mavara/img/daneshnameh/math/71dff1e526f313906e472cd2ffeb1344.png به مختصات گفته شده در مطلب بالا از مجموع توان دوم هر یک از مؤلفههای فوق رادیکال با فرجه دوم میگیریم بنابراین داریم:
http://daneshnameh.roshd.ir/mavara/img/daneshnameh/math/9206d14d456177b37b5ae3ac43fb7097.png
حاصل عبارت فوق یک کمیت اسکالر میباشد.
وسط یک پاره خط در فضا
برای پیدا کردن وسط یک پاره خط که دو نقطهhttp://daneshnameh.roshd.ir/mavara/img/daneshnameh/math/5de7a00cb0e4f66908021b67cfe44678.png را به هم وصل میکند متوسط و یا به عبارتی میانگین مختصاتhttp://daneshnameh.roshd.ir/mavara/img/daneshnameh/math/71dff1e526f313906e472cd2ffeb1344.png را بدست میآوریم.
.................................................. ................
کره و استوانه
علاوه بر مطالب فوق هندسه فضایی به مطالعه کره و استوانه نیز میپردازد. معادله متعارف کره به شعاع a و مرکزhttp://daneshnameh.roshd.ir/mavara/img/daneshnameh/math/a8f62771b160cd9841d1b4e3b23be853.png به صورت زیر است:
http://daneshnameh.roshd.ir/mavara/img/daneshnameh/math/e7469cfb4635172c2a27cf8b5fdf5c65.png
در مورد استوانه و مطالعه درباره استوانه ناچار به تعمیم هندسه تحلیلی به فضا هستیم. به طور کلی استوانه سطحی است که از حرکت خط مستقیم در امتداد یک منحنی تولید میشود به طوری که همواره موازی خط میباشد. به طور کلی ، هر منحنی مانندhttp://daneshnameh.roshd.ir/mavara/img/daneshnameh/math/54301f7342bf8419bac3de2ecd79850f.png در صفحهhttp://daneshnameh.roshd.ir/mavara/img/daneshnameh/math/020c97cbe190b49509843be689e8c9f8.pngاستوانه ای در فضا تعریف میکند که معادله آن به صورت فوق میباشد و از نقاط خطوطی مار بر منحنی تشکیل شده است که با محور z موازیاند. خطوط را گاهی عناصر استوانه مینامند. بحث فوق را میتوان برای استوانههایی که عناصرشان موازی سایر محورهای مختصاتاند تکرار کرد. به طور خلاصه: یک معادله در مختصات دکارتی ، که از آن یکی از مختصات متغیر حذف شده، نمایش استوانه ای است که عناصرش موازی محور مربوط به متغیر مفقود است. سهمی گونها یکی دیگر از اشکال مختصات فضایی هستند. بسیاری از آنتنها به شکل قطعاتی از سهمی گونهای دوارند، رادیو تلسکوپها یکی دیگر از انواع سهمی گونهای مورد استفاده بشر هستند که در ساخت آنها از هندسه فضایی مدد گرفته شده است.
منشور
منشور قائم شکلی فضایی است که از دو یا چند ضلعی مساوی و موازی تشکیل شده که رئوس این چندضلعیها طوری به هم وصل شده اند که وجوه جانبی این شکل فضایی مستطیل میباشد.
مکعب مستطیل
مکعب مستطیل منشوری است که قاعدههای آن مستطیل میباشد اگر ابعاد قاعده مکعب مستطیل b , a و ارتفاع آن c باشد خواهیم داشت:
a+b)2c) = مساحت جانبی مکعب مستطیل
(ab+ac+bc)2=2ab+(2bc+2ac)= مساحت کل مکعب مستطیل
Abc= حجم مکعب مستطیل
هرم
هرم شکلی است فضایی که قاعده آن یک یا چند ضلعی است و وجوه جانبی آن مثلث است. این مثلثها یک رأس مشترک به نام S دارند. هرمی که قاعده آن مربع باشد هرم مربع القاعده و هرمی که قاعده آن مثلث باشد هرم مثلث القاعده نامیده میشود. پاره خطی که از رأس هرم بر صفحه قاعده آن عمود میشود ارتفاع نامیده میشود. اگر قاعده یک هرم یک چند ضلعی منتظم باشد پای ارتفاع آن بر مرکز قاعده منطبق باشد، هرم را هرم منتظم مینامیم. ارتفاع هر وجه جانبی هرم منتظم را سهم هرم مینامند.
2/سهم×محیط قاعده= مساحت جانبی هرم منتظم
ارتفاع×مساحت قاعده ×1/3 = حجم هرم
مخروط
اگر یک مثلث قائم الزاویه را حول یکی از اضلاع زاویه قائمه دوران دهیم شکلی فضایی پدید میآید که مخروط نامیده میشود. در این صورت ضلعی که مثلث را حول آن دوران دادهایم ارتفاع مخروط و ضلع دیگر زاویه قائمه شعاع قاعده مخروط و وتر مثلث مولد مخروط میباشد.
2 / مولد مخروط×محیط قاعده مخروط = مساحت جانبی مخروط
ارتفاع×مساحت قاعده×1/3 = حجم مخروط
hoora
12th March 2010, 11:41 PM
هندسه اقلیدسی (http://4tmu.ir/forum/index.php?topic=4343.msg17600#msg17600)
این عکس تغییر اندازه داده شده است. برای دیدن آن در اندازه واقعی اینجا را کلیک کنید. اندازه واقعی آن 930 در 1094 و 174KB بوده است.http://upload.wikimedia.org/wikipedia/commons/8/81/Sanzio_01_Euclid.jpg
هندسه اقلیدسی
هندسهٔ اقلیدسی به مجموعهٔ گزارههایِ هندسیای اطلاق میشود که به بررسی موجودات ریاضیاتی مثل نقطه و خط میپردازد و بر پایههائی که اقلیدس ریاضیدان یونانی در کتاب خود بهنام اصول عرضه کرده، بنا شده است. این قضایایِ هندسی عمدتاً توسطِ یونانیانِ باستان کشف و توسطِ اقلیدسِ اسکندرانی گردآوری شدهاند و بخش بزرگی از آن همان است که در دبیرستانها تدریس میشود. کتابِ «اصولِ» اقلیدس یکی از بزرگترین و تأثیرگذارترین کتابها چه به لحاظِ محتوا و چه از نظرِ روشِ اصلِ موضوعهایاش بوده است. تا قرن نوزدهم میلادی هر وقت از هندسه سخن میرفت منظور هندسه اقلیدسی بود. بررسی مفاهیم هندسه اقلیدسی در دو بعد را «هندسه مسطحه» و در سه بعد «هندسه فضائی» مینامند. این مفاهیم را به ابعاد بالاتر از سه نیز میتوان تعمیم داد و همچنان آن را هندسه اقلیدسی نامید.
تاریخچه
در حدود ۳۰۰ سال قبل از میلاد دنیای هندسه در تب و تاب بود. نظرات مختلفی در زمینهٔ هندسه وجود داشت و سرانجام اقلیدس با انتشار کتاب اصول بنیادی را بنا نهاد که تا قرنها منسجمترین بنیادهای نظری بشر محسوب میشود. روش اقلیدس ساده بود او چند اصل موضوع و چند اصل متعارف را بدون اثبات به عنوان اصول بدیهی پذیرفت و سپس بر اساس آن صدها قضیه دیگر را اثبات کرد که بیشتر آنها بسیار دور از ذهن بودند.
اقلیدس شاگرد مکتب افلاطون بود. او در اصول سیزده جلدی خود تمام دانش بشری تا آن زمان گرد آورد و به مدت دو هزار سال مرجعی بیبدیل باقی ماند. روش بنداشتی (اصل موضوع) اقلیدس منجر به کاربرد الگویی شد که امروزه به آن ریاضیات محض میگوییم. محض از این نظر که با اندیشهٔ محض سر و کار دارد و از راه آزمون خطا و تجربه به دست نمیآید و درستی یا نادرستی احکام آن را نیز از راه تجربه نمیتوان اثبات یا نفی کرد. برای استفاده از روش بنداشتی یا اصل موضوع دو شرط را باید پذیرفت:
* شرط اول: پذیرفتن احکامی به نام بنداشت یا اصل موضوع که به هیچ توجیه دیگری نیاز نداشته باشند.
* شرط دوم: توافق بر اینکه کی و چگونه حکمی "به طور منطقی" از حکم دیگر نتیجه میشود، یعنی توافق در برخی قواعد استدلال.
کار عظیم اقلیدس این بود که چند اصل ساده، چند حکم که بینیاز به توجیهی پذیرفتنی بودند دستچین کرد، و از آنها 465 گزاره نتیجه گرفت. زیبایی کار اقلیدس در این است که این همه را از آن اندک نتیجه گرفت.
اصول موضوعه
تمامِ هندسهٔ اقلیدسی (تمامِ قضیههایی که در دبیرستان میخوانیم، قضیهٔ فیثاغورس و غیره) میتوانند از پنج اصلِ موضوعهٔ زیر استخراج شوند:
1. از هر دو نقطه یک خطِ راست میگذرد.
2. هر پارهخط را میتوان تا بینهایت رویِ خطِ راست امتداد داد.
3. با یک نقطه به عنوانِ مرکز و یک پارهخط به عنوانِ شعاع میتوان یک دایره رسم نمود.
4. همهٔ زوایایِ قائمه با هم برابر اند.
5. اگر یک خط دو خطِ دیگر را قطع کند، آن دو خط در طرفی که جمعِ زوایایِ داخلیِ تولید شده توسطِ خطِ مورب کمتر از دو قائمه است به هم میرسند (اگر ادامه داده شوند).
برایِ بیانِ این اصولِ موضوعه به مفاهیمی مانندِ نقطه و خط نیاز داریم. همانطور که باید چند گزاره را بدونِ اثبات بپذیریم تا بقیهٔ گزارهها استخراج شوند لازم است چند مفهوم را نیز بدونِ تعریف بپذیریم. به این مفاهیم «تعریفنشدهها» میگویند. همانطور که دیده میشود اصولِ هندسهٔ اقلیدسی به جز اصلِ پنجم بسیار ساده و بدیهی به نظر میآیند. به همیندلیل از زمانِ اقلیدس ریاضیدانانِ بیشماری در شرق و غرب (منجمله خیام ریاضیدانِ ایرانی) تلاش کردهاند اصلِ آزاردهندهٔ پنجم را به اثبات برسانند. این کار همواره شکست خورده است. سپس برخی ریاضیدانان تلاش نمودند خلافِ اصلِ پنجم را فرض کنند تا ببینند آیا هندسهای متناقض پدید میآید یا نه. از آنجا که هیچ تناقضی در هندسههایِ دارایِ اصلِ پنجمِ متفاوت دیده نشد به آنها نامِ هندسه نااقلیدسی را دادند. در نتیجه این مسأله مطرح گردید که تجربه کدام هندسه را تأیید میکند. نظریهٔ نسبیت عام به این پرسش پاسخ میدهد.
اصول متعارفی
1. دو مقدار مساوی بامقدار سوم با هم مساوی اند.
2. اگر به دو مقدار مساوی مقادیر مساوی اضافه کنیم، حاصل جمعها با هم مساوی اند.
3. اگر از دو مقدار مساوی مقادیر مساوی کم کنیم، باقیماندهها با هم مساوی اند.
4. دو چیز قابل انطباق با هم برابر اند.
5. کل از جزء بزرگتر است.
پس از اقلیدس
2100 سال پس از اقلیدس هندسهٔ او یگانه هندسهٔ موجود بود. با این وجود در طی این مدت طولانی ریاضیدانهای زیادی کوشیدند اصل پنجم را از روی سایر اصل اثبات کنند که این کوششها سرانجام به نتیجهٔ دیگری منجر شد و در اوایل قرن نوزدهم هندسههای جدیدی به وجود آمد که هندسههای نااقلیدسی نامیده میشود. هندسهیی که تنها بر اساس چهار اصل اول اقلیدس ساخته میشود هندسه نتاری نامیده میشوند. دیوید هیلبرت در آخرین سال قرن نوزدهم (1899) کتاب "مبانی هندسه" خود را نوشت. هیلبرت در این کتاب صورتبندی دقیقتری از هندسهٔ اقلیدسی ارائه دارد.
hoora
12th March 2010, 11:41 PM
هندسهٔ نااقلیدسی
http://4tmu.ir/forum/Themes/Outline/images/icons/assist.gifاین عکس تغییر اندازه داده شده است. برای دیدن آن در اندازه واقعی اینجا را کلیک کنید. اندازه واقعی آن 663 در 167 و 3KB بوده است.http://upload.wikimedia.org/wikipedia/commons/6/68/Noneuclid.png
تصویری از سه حالت اصلی در بحث هندسههای نااقلیدسی.
هندسههای نااقلیدسی از مطالعهٔ عمیقتر موضوع توازی در هندسهٔ اقلیدسی پیدا شدهاند. دو نیمخط موازی عمود بر پاره خط PQ را در نمودار شماره 1 در نظر بگیرد. در هندسهٔ اقلیدسی فاصلهٔ (عمودی) بین دو نیمخط هنگامی که به سمت راست حرکت میکنیم فاصلهٔ p تا Q باقی میمانند؛ ولی در اوایل سدهٔ نوزدهم دو هندسهی دیگر پیشنهاد شد. یکی هندسهٔ هذلولوی (از کلمهٔ یونانی هیپربالئین به معنی "افزایش یافتن") که در آن فاصلهٔ میان نیمخطها افزایش مییابد و دیگری هندسهٔ بیضوی (elliptic geometry) (از کلمهٔ یونانی ایپلن "کوتاه شدن") که در آن فاصله رفته رفته کم میشود و سرانجام نیمخطها همدیگر را میبرند. این هندسهٔ نااقلیدسی بعدها توسط گاوس و ریمان در قالب هندسهٔ کلیتری بسط داده شدند. (همین هندسهٔ کلیتر است که در نگرهٔ نسبیت عام اینشتاین مورد استفاده قرار گرفته است.)
استفاده از تمامی مطالب سایت تنها با ذکر منبع آن به نام سایت علمی نخبگان جوان و ذکر آدرس سایت مجاز است
استفاده از نام و برند نخبگان جوان به هر نحو توسط سایر سایت ها ممنوع بوده و پیگرد قانونی دارد
vBulletin® v4.2.5, Copyright ©2000-2025, Jelsoft Enterprises Ltd.