توجه ! این یک نسخه آرشیو شده میباشد و در این حالت شما عکسی را مشاهده نمیکنید برای مشاهده کامل متن و عکسها بر روی لینک مقابل کلیک کنید : نانو کامپوزیتها
ghasem motamedi
12th January 2010, 12:38 AM
نانو کامپوزیت تحول بزرگ در مقیاس کوچک
مواد و توسعهٔ آنها از پایههای تمدن به شمار میروند. به طوری که دورههای تاریخی را با مواد نامگذاری کردهاند: عصر سنگ، عصر برنز، عصر آهن، عصر فولاد، عصر سیلیکون و عصر کربن. ما اکنون در عصر کربن به سر میبریم. عصر جدید با شناخت یک مادهٔ جدید به وجود نمیآید، بلکه با بهینه کردن و ترکیب چند ماده میتوان پا در عصر نوین گذاشت. دنیای نانومواد، فرصتی استثنایی برای انقلاب در مواد کامپوزیتی است.
کامپوزیت ترکیبی است از چند مادهٔ متمایز، به طوری که اجزای آن بهآسانی قابل تشخیص از یکدیگر باشند. یکی از کامپوزیتهای آشنا بتُن است که از دو جزء سیمان و ماسه ساخته میشود.
برای تغییر دادن و بهینه کردن خواص فیزیکی و شیمیایی مواد، آنها را کامپوز یا ترکیب میکنیم. به طور مثال، پُلی اتیلن{۱} که در ساخت چمنهای مصنوعی از آن استفاده میشود، رنگپذیر نیست و بنابراین، رنگ این چمنها اغلب مات به نظر میرسد. برای رفع این عیب، به این پلیمر وینیل استات میافزایند تا خواص پلاستیکی، انعطافی و رنگپذیری آن اصلاح شوند. در واقع، هدف از ایجاد کامپوزیت، به دست آوردن مادهای ترکیبی با خواص دلخواه است.
نانوکامپوزیت، همان کامپوزیت در مقیاس نانومتر (۹-۱۰) است. نانوکامپوزیتها در دو فاز تشکیل میشوند. در فاز اول ساختاری بلوری در ابعاد نانو ساخته میشود که زمینه یا ماتریس کامپوزیت به شمار میرود. این زمینه ممکن است از جنس پلیمر، فلز یا سرامیک باشد. در فاز دوم ذراتی در مقیاس نانو به عنوان تقویتکننده{۲} برای استحکام، مقاومت، هدایت الکتریکی و... به فاز اول یا ماتریس افزوده میشود.
بسته به اینکه زمینهٔ نانوکامپوزیت از چه مادهای تشکیل شده باشد، آن را به سه دستهٔ پُلیمری، فلزی و سرامیکی تقسیم میکنند. کامپوزیتهای پلیمری به علت خواصی مانند استحکام، سفتی و پایداری حرارتی و ابعادی، چندین سال است که در ساخت هواپیماها به کار میروند. با رشد نانوتکنولوژی، کامپوزیتهای پلیمری بیش از پیش به کار گرفته خواهند شد.
تقویت پلیمرها با استفاده از مواد آلی یا معدنی بسیار مرسوم است. از نظر ساختاری، ذرات و الیاف معمولاً باعث ایجاد استحکام ذاتی میشوند و ماتریس پلیمری میتواند با چسبیدن به مواد معدنی، نیروهای اعمالشده به کامپوزیت را به نحو یکنواختی به پُرکن یا تقویتکننده منتقل کند. در این حالت، خصوصیاتی چون سختی، شفافیت و تخلخلِ مادهٔ درون کامپوزیت تغییر میکند. ماتریس پلیمری همچنین میتواند سطحِ پُرکن را از آسیب دور نماید و ذرات را طوری جدا از هم نگه دارد که رشد تَرَک به تأخیر افتد. گذشته از تمام این خصوصیات فیزیکی، اجزای مواد نانوکامپوزیتی میتوانند بر اثر تعامل بین سطح ماتریس و ذرات پُرکن، ترکیبی از خواصّ هر دو جزء را داشته باشند و بهتر عمل کنند.
کامپوزیتهایی که بستر فلزی دارند، کموزن و سبکاند و به علت استحکام و سختیِ بالا، کاربردهای وسیعی در صنایع خودرو و هوا ـ فضا پیدا کردهاند. اما این کاربردها به لحاظ ضعف در قابلیت کشیده شدن در چنین کامپوزیتهایی، محدود شدهاند. تبدیل کامپوزیت به نانوکامپوزیت سبب افزایش بازده استحکامی و رفع ضعفِ بالا میشود.
● نانوکامپوزیت های نانوذرهای
در این کامپوزیتها از نانوذراتی همچون (خاک رس، فلزات، و...) به عنوان تقویتکننده استفاده میشود. برای مثال، در نانوکامپوزیتهای پلیمری، از مقادیر کمّیِ (کمتر از ۱۰درصدِ وزنی) ذرات نانومتری استفاده میشود. این ذرات علاوه بر افزایش استحکام پلیمرها، وزن آنها را نیز کاهش میدهند. مهمترین کامپوزیتهای نانوذرهای، سبکترین آنها هستند.
● نانوکامپوزیتهای نانولولهای
نانولولههای کربنی در دو گروه طبقهبندی میشوند: نانولولههای تکدیواره و نانولولههای چنددیواره. در این نوع از کامپوزیتها، این دو گروه از نانولولهها در بستری کامپوزیتی توزیع میشوند. در صورتی که قیمت نانولهها پایین بیاید و موانع اختلاط آنها رفع شود، کامپوزیتهای نانولولهای موجب رسانایی و استحکام فوقالعادهای در پلیمرها میشوند و کاربردهای حیرتانگیزی همچون آسانسور فضایی برای آن قابل تصور است.
تحقیقات در زمینهٔ توزیع نانولولههای کربنی در پلیمرها بسیار جدید هستند. علاقه به نانولولههای تکدیواره و تلاش برای جایگزین کردن آنها در صنعت، به علت خصوصیات عالیِ مکانیکی و رسانایی الکتریکی آنها است. (رسانندگی الکتریکی این نانولوله¬ها در حد فلزات است.)
اما در دسترس بودن و تجاری بودن نانولولههای چنددیواره، باعث شده است که پیشرفت بیشتری در این زمینه صورت بگیرد. تا حدی که اکنون میتوان از محصولاتی نام برد که در آستانهٔ تجاری شدنِ تولید هستند. برای نمونه، نانولولههای کربنیِ چنددیواره در پودرهای رنگ به کار رفتهاند.
استفاده از این نانولولهها باعث میشود که رسانایی الکتریکی در مقدار کمی از فاز تقویتکننده به دست آید. از نظر نظامی نیز فراهم کردن هدایت الکتریکی فرصتهای انقلابی به وجود خواهد آورد. به عنوان مثال، از پوستههای الکتریکی ـ مغناطیسی گرفته تا کامپوزیتهای رسانای گرما و لباسهای سربازان آینده!
ghasem motamedi
12th January 2010, 12:39 AM
نانوکامپوزیتِ خاک رُس ـ پلیمر
نانوخاک رُس ـ پلیمر یک مثال موردی از محصولات نانوتکنولوژی است. در این نوع ماده، از خاک رُس {۳} به عنوان پُرکننده برای بهبود خواص پلیمرها استفاده میشود. خاک رُسهای نوع اسمکتیت {۴}، ساختار لایهلایه دارند و هر لایه تقریباً یک نانومتر ضخامت دارد. صدها یا هزاران عدد از این لایهها به وسیلهٔ یک نیروی واندروالسیِ ضعیف روی هم انباشته میشوند تا یک جزء رُسی را تشکیل دهند. با یک پیکربندی مناسب، این امکان وجود دارد که رُسها را به اَشکال و ساختارهای گوناگون، درون یک پلیمر به شکل سازمانیافته قرار دهیم.
معلوم شده است که بسیاری از خواص مهندسی، هنگامی که در ترکیب ما از میزان کمی ــ معمولا ً چیزی کمتر از ۵ درصد وزنی ــ پُرکننده استفاده شود، بهبود قابل توجهی مییابد.
امتیاز دیگر نانوکامپوزیتهای خاک رُس ـ پلیمر این است که تأثیر قابل توجهی بر خواص اُپتیکی (نوری) پلیمر ندارند. ضخامت یک لایهٔ رُس منفرد، بسیار کمتر از طول موج نور مرئی است. بنابراین، نانوکامپوزیتی که خوب ورقه شده باشد، از نظر اُپتیکی شفاف است.
از طرفی، با توجه به اینکه امروزه حجم وسیعی از کالاهای مصرفی جامعه را پلیمرهایی تشکیل میدهند که بهراحتی میسوزند یا گاهی در مقابل شعله فاجعه میآفرینند، لزوم تحقیق در خصوص مواد دیرسوز احساس میشود. نتایج تحقیقات حاکی از آن است که میزان آتشگیری در این نانوکامپوزیتهای پلیمری حدود ۷۰ درصد نسبت به پلیمر خالص کمتر است. در عین حال، اغلب خواص کاربردی پلیمر نیز تقویت میشوند.
اولین کاربرد تجاری نانوکامپوزیتهای خاک رُس ـ نایلون ۶، به عنوان روکش نوار زمانسنج برای ماشینهای تویوتا، در سال ۱۹۹۱ بود. در حال حاضر نیز از این نانوکامپوزیت در صنعت لاستیک استفاده میشود. با افزودن ذرات نانومتریِ خاک رُس به لاستیک، خواص آن به طور قابل ملاحظهای بهبود پیدا میکند که از جمله میتوان در آنها به موارد زیر اشاره کرد:
۱) افزایش مقاومت لاستیک در برابر سایش
۲) افزایش استحکام مکانیکی
۳) افزایش مقاومت گرمایی
۴) کاهش قابلیت اشتعال
۵) کاهش وزن لاستیک
● نانوکامپوزیت الماس ـ نانولوله
محققان توانستهاند سختترین مادهٔ شناختهشده در جهان (الماس) را با نانولولههای کربنی ترکیب کنند و کامپوزیتی با خصوصیات جدید به دست آورند. اگرچه الماس سختیِ زیادی دارد، ولی به طور عادی هادی جریان الکتریسیته نیست. از طرفی، نانولولههای کربن به شکلی باورنکردنی سخت و نیز رسانای جریان الکتریسیتهاند. با یکپارچه کردن این دو فُرمِ کربن با یکدیگر در مقیاس نانومتر، کامپوزیتی با خصوصیات ویژه به دست خواهد آمد.
این کامپوزیت میتواند در نمایشگرهای مسطح کاربرد داشته باشد. الماس میتواند نانولولههای کربنی را در مقابلِ ازهمگسیختگی حفظ کند. در حالی که به طور طبیعی، وقتی نمایشگر را فقط از نانولولههای کربنی بسازند، ممکن است از هم گسیخته شوند.
این کامپوزیت همچنین در ردیابیهای زیستی کاربرد دارد. نانولولهها به مولکولهای زیستی میچسبند و به عنوان حسگر عمل میکنند. الماس نیز به عنوان یک الکترود فوقالعاده حساس رفتار میکند.
تنها چیزی که در این تحقیقات واضح نیست این است که الماس و نانولولههای کربنی چگونه محکم به هم میچسبند؟
● جدیدترین خودرو نانوکامپوزیتی
این خودرو توسط شرکت جنرالموتورز طراحی شده و به علت استفاده از مواد نانوکامپوزیتی در قسمتهای مختلف آن، حدود ۸ درصد سبکتر از نمونههای مشابه قبلی است و علاوه بر سبک بودن، در برابر تغییرات دمایی هم مقاومت میکند.
● توپ تنیس نانوکامپوزیتی
شرکت ورزشی ویلسون، یک توپ تنیس دولایه به بازار عرضه کرده که عمر مفید آن حدود چهار هفته است ــ در حالی که توپهای معمولی عمر مفیدشان در حدود دو هفته است ــ ولی از نظر خاصیت ارتجاعی و وزن تفاوتی بین این دو مشاهده نمیشود. علت مهم و اصلی دوام توپهای نانوکامپوزیتی، وجود یک لایهٔ پوشش نانوکامپوزیتی به ضخامت ۲۰ میکرون به عنوان پوستهٔ داخلی است که باعث میشود هوای محبوس در داخل توپ ضمن ضربه خوردن خارج نگردد، درحالیکه توپهای معمولی از جنس لاستیک و در برابر هوا نفوذپذیرند.
● الیاف نانو، تحولی در صنعت نساجی
امروزه ساخت کامپوزیتهای تقویتشده به وسیلهٔ نانوالیاف پیشرفت چشمگیری کرده است. لیفچههای کربنیِ جامد و توخالی با چند میکرون طول و دو تا بیش از صد نانومتر قطر خارجی خلق شدهاند که مصارفی در مواد کامپوزیت و روکش دارند.
یکی از دانشجویان کارشناسی ارشد دانشکدهٔ مهندسی نساجی دانشگاه امیرکبیر، دستگاه تولید نانوالیاف از محلول پلیمری را طراحی کرده و ساخته است. این دستگاه در *****اسیون مایعات، گازها و مولکولها، امور پزشکی مانند مواد آزادکنندهٔ دارو در بدن، پوشش زخم، ترمیم پوست، نانوکامپوزیتها ، نانوحسگرها، لباسهای محافظ نظامی و... کاربرد دارد.
مهمترین تأثیر نانوکامپوزیتها در آینده کاهش وزن محصولات خواهد بود. ابتدا کامپوزیتهای سبکوزن و بعد تجهیزات الکترونیکی کوچکتر و سبکتر در ماهوارههای فضایی.
سازمان فضایی آمریکا (ناسا) در حمایت از فناوری نانو بسیار فعال است. بزرگترین تأثیر فناوری نانو در فضاپیماها، هواپیماهای تجاری و حتی فناوری موشک، کاهش وزن مواد ساختمانیِ سازههای بزرگ درونی و بیرونی، جدارهٔ سیستمهای درونی، اجزای موتور راکتها یا صفحات خورشیدی خواهد بود.
نظامی نیز کامپوزیتها موجب ارتقا در نحوهٔ حفاظت از قطعات الکترونیکی حساس در برابر تشعشع و خصوصیات دیگر همچون ناپیدایی در رادار میشوند.
کامپوزیتهای نانوذرهٔ سیلیکاتی به بازار خودروها وارد شدهاند. در سال ۲۰۰۱ هم جنرال موتورز و هم تویوتا شروع به تولید محصول با این مواد را اعلام کردند. فایدهٔ آنها افزایش استحکام و کاهش وزن است که مورد آخر صرفهجویی در سوخت را به همراه دارد.
علاوه بر این، نانوکامپوزیتها به محصولاتی همچون بستهبندی غذاها راه یافتهاند تا سدی بزرگتر در برابر نفوذ گازها باشند (مثلاً با حفظ نیتروژن درونِ بسته یا مقابله با اکسیژن بیرونی).
همچنین خواصّ تعویق آتشگیریِ کامپوزیتهای سیلیکات نانوذرهای، میتواند در رختِ خواب، پردهها و غیره کاربردهای بسیاری پیدا کند.
ghasem motamedi
12th January 2010, 12:40 AM
to compose یعنی ترکیب کردن و بنابراین کامپوزیت (composite) یعنی مرکب. مرکب هم که میدانیم، یعنی چیزی که از ترکیب چند چیز مختلف به دست آمده است. موادّ کامپوزیتی به موادی گفته میشوند که از ترکیب چند نوع ماده به وجود آمدهاند. وقتی میگوییم از ترکیب چند ماده، منظور این است که هرکدام از این موادّ ترکیبشده، قابلیت استفاده به صورت یک مادهٔ مستقل را دارند.
اولین کامپوزیت کِی ساخته شد؟
کسی نمیداند اولین کامپوزیت کِی ساخته شد. شاید اولین کامپوزیتی که بشر با آن سروکار پیدا کرد، کاهگِل باشد. قدیمها برای ساختن خانه از گل استفاده میکردند، اما چون گل بعد از خشک شدن ترک میخورد (وقتی آبِ گل تبخیر میشود، حجم آن کاهش پیدا میکند و چون گل خشک نمیتواند خودش را جمع کند ترک میخورد)، مقداری کاه به آن افزودند تا حفرهها را پُر کند و مانع از ترک خوردن گل شود. شاید هم اولین کامپوزیت را مصریها ساخته باشند که در قایقهایشان به چوب بدنه مقداری پارچه میآمیختند تا در اثر خیس شدن چوب باد نکند. اما در هر حال، میشود گفت که مواد کامپوزیتی در سالهای اخیر است، که به عنوان یک مادهٔ مهندسی پذیرفته شدهاند.
● چرا از کامپوزیتها استفاده میکنیم؟
قبل از این گفتیم که گل بهتنهایی و پس از خشک شدن ترک میخورد. کاه با خواص ارتجاعی خود این نقص گل را برطرف میکند، بنابراین، مقداری از آن را به گل میافزایند. اصلاً علت استفاده از کامپوزیت همین خواص است. یعنی ما برای اینکه خواص بدِ یک ماده را برطرف کنیم، مادهٔ دیگری را که مکمل خواص مادهٔ اولیه است به آن میافزاییم.
● ترکیب کردن یعنی چه؟
انواع ترکیبها عبارتند از: شیمیایی، مکانیکی، و فیزیکی.
وقتی دو ماده با هم ترکیب شیمیایی میدهند که بین آن دو یک پیوند شیمیایی مثل کووالانسی، یونی، واندروالسی و... برقرار شده باشد. به موادی که اینگونه با هم ترکیب میشوند محلول میگویند. بارزترین و ملموسترین مثال برای محلولها آلیاژها هستند.
اما وقتی دو ماده با اعمال نیرو کنار هم قرار میگیرند، به صورت مکانیکی با هم ترکیب شدهاند و واضح است با برداشتن این نیرو، این ترکیب از بین میرود.
اما ترکیب در کامپوزیتها جزء هیچکدام از این دو حالت نیست، بلکه ترکیبی از نوع فیزیکی است. مثال مناسب برای این نوع ترکیب، ساندویچ است. وقتی یک یا چند ماده با مادهٔ دیگری محاصره شود، به طوری که نتواند از محاصرهٔ آن فرار کند، یک ترکیب فیزیکی به وجود میآید. برای درک بهتر این نوع ترکیب، کسی را تصور کنید که در یک باتلاق گیر افتاده است.
● اجزای یک کامپوزیت
گفتیم که کامپوزیت عبارت است از ترکیب فیزیکی دو ماده با خواص متفاوت. بنابراین، کامپوزیتها از دو قسمت تشکیل شدهاند: قسمت زمینه (مادهٔ اول که در یک سری از خواص نقص دارد) و قسمت تقویتکننده (مادهٔ دومی که به مادهٔ اول اضافه میشود تا دستهای از خواص آن را بهبود بخشد).
● زمینه چیست؟
زمینهٔ یک مادهٔ مرکب، مادهای است پیوسته که مادهٔ دوم را در برگرفته است. این ماده در کاهگِل، گِل و در مثال باتلاق و آدم، محیط باتلاق است که پیوسته است و آدم را در برگرفته است. دومین ملاک برای تعیین زمینه این است که مقدار مادهای که به عنوان زمینه استفاده میشود بیشتر از قسمت تقویتکننده است.
● وظیفهٔ زمینه چیست؟
اولین وظیفهٔ زمینه احاطهٔ مادهٔ تقویتکننده است، به طوری که نگذارد مادهٔ تقویتکننده پراکنده شود؛ وظیفهٔ دوم، محافظت از مادهٔ تقویتکننده در برابر عوامل شیمیایی است؛ و وظیفهٔ سوم این است که چون مواد زمینه را نرم انتخاب میکنند، وقتی نیرو به مادهٔ مرکب (کامپوزیت) وارد میشود، توسط زمینه به مادهٔ تقویتکننده انتقال داده شود تا مادهٔ تقویتکننده نیرو را تحمل کند.
● تقویتکننده چیست؟
تقویتکنندهها موادی هستند که به صورت تکهتکه، در یک زمینهٔ پیوسته وارد میشوند تا خواص مادهٔ زمینه را بهتر کنند.
● تقویتکنندهها چه شکلی هستند؟
تقویتکنندهها میتوانند به صورت یک صفحه، یک رشته ( نخ)، یا یک ذره (پودر) وارد حجم زمینه شوند و خواص آن را بهبود بخشند.
● کامپوزیتها چه کاربردهایی دارند؟
امروزه میتوانیم ترکیبات کامپوزیتی را در زندگی روزانه و در اطراف خود ببینیم. چند مثال از این وسایل که در آنها ترکیبات کامپوزیتی به کار رفته است، اینها هستند: بدنهٔ هلیکوپتر، زه راکت تنیس، بدنهٔ هواپیما، کاهگِل، توپهای ورزشی و...
باشگاه دانشآموزی نانو
ghasem motamedi
12th January 2010, 12:42 AM
روش های تولید ماشینی کامپوزیت ها
روش های مختلفی جهت تولید قطعات کامپوزیتی پایه پلیمری وجود دارد که به طور کلی به سه دسته تقسیم می شوند :
1- روش های تولید ساده لایه چینی دستی و پاششی که شامل روش های تولید با قالب باز هستند . تیراژ دراین نوع تولید ، محدود یک الی سه قطعه در روز است و کیفیت محصول به اپراتور بستگی دارد .
2- روش های تولید خاص پالتروژن ، پیچش الیاف و لایه نشانی پیوسته که جهت تولید قطعات خاص مانند لوله ، پروفیل ، ورق و غیره مورد استفاده قرار می گیرند .
3- روش تولید قطعات صنعتی SMC ، BMC ، RTM ، GMT ، LFT و ... که روش های LFT و GMT مربوط به گرما نرم ها و روش های RTM ، BMC و SMC مربوط به گرما سخت ها هستند .
بازار تولید قطعات صنعتی در اروپا در سال 1999 معادل 352 هزارتن بوده که سهم هریک از این روش ها به صورت زیر است :
SMC : 190 هزارتن معادل 54 درصد
BMC : 90 هزارتن معادل 6/25 درصد
LFT و GMT : 42 هزارتن معادل 9/11 درصد
RTM : 30 هزارتن معادل 5/8 درصد
1- روش تولید SMC
Sheet Moulding Compoundیا SMC ترکیبی از خانواده گرما سخت های تقویت شده با الیاف شیشه بین 60- 20 درصد است که معمولا ً از پنج ماده اصلی زیر تشکیل شده است :
- رزین پلی استر غیر اشباع ویژه SMC که دارای یک پیک گرمازا بین 290-220 درجه سانتی گراد است .
- افزودنی LS , LP
- الیاف شیشه معمولا ً از نوع رووینگ
- پر کننده کربنات کلسیم ، کائولن و هیدروکسید آلومینیوم
فرآیند تولید قطعه SMC شامل سه مرحله است :
تهیه ورق یا لایه SMC ، تولید قطعه قالب گیری و عملیات تکمیلی . تهیه ورق SMC به این شکل است که ابتدا مواد اولیه مطابق فرمولاسیون درون مخلوط کن و با دور بالا مخلوط می شوند . پس از آن که خمیر حاصله به گرانروی مناسب رسید ، غلیظ کننده Thickener به آن اضافه می شود . خمیر حاصل به وسیله پمپ ، به دستگاه تولید ورق SMC منتقل و بر روی دو لایه فیلم پلی اتیلنی ، به عنوان فیلم حامل Carrier ، ریخته می شود . میزان خمیر به وسیله دو تیغه قابل تنظیم است . سپس الیاف شیشه به طول 25 میلی متر 50-12 میلی متر بریده شده و به صورت منظم بر روی خمیر ریخته می شود . لایه حاصل همراه با فیلم دیگر که فقط شامل خمیر است و فاقد الیاف است تشکیل یک لایه را می دهند . پس از عبور از یک سری غلتک ، الیاف به صورت کامل با خمیر آغشته می شود ، سپس ورق بسته بندی می شود . پس از حدود سه الی پنج روز محصول آماده عملیات قالب گیری است . لایه های SMC برش خورده ، درون قالب گرم فولادی قرار می گیرند و پرس طی دو مرحله بسته شده و دو مرحله فشار اعمال می شود . در نهایت ضمن عملیات پخت قطعه درون قالب محصول تولید می شود .
تجهیزات مورد نیاز عبارتند از : پرس هیدرولیک با قابلیت Close speed دردو مرحله مرحله اول mm/s 250-100 و مرحله دوم mm/s 20-5/2 و قابلیت اعمال فشار در دو مرحله و قالب از جنس فولاد با قابلیت گرم شدن به وسیله الکتریسیته یا روغن .
مزایای این روش ، تولید در حجم زیاد ، امکان ساخت قطعات ساده و پیچیده ، تولید قطعه با کیفیت سطحی A ، هزینه بسیار کم نیروی انسانی به ازای واحد محصول ، قیمت پایین محصول تمام شده و مشخصات مکانیکی یکنواخت با تلرانس 6 درصد بوده و معایب آن ، نیاز به سرمایه گذاری زیاد ، عملیات پیچیده تر بازیافت نسبت به گرمانرم ها است . روش SMC به طور گسترده ای در صنایع الکتریکی به کار می رود . میزان مصرف اروپا در سال 1999 معادل 82 هزار تن تابلوهای برق ، قطعات الکتریکی ، محفظه چراغ بزرگراه و اتوبان بوده است . علت استفاده از SMC در صنایع الکتریکی ، نارسانایی الکتریکی ، پایداری در حرارت بالا ، عدم نیاز به رنگ آمیزی ، مقاومت در برابر شرایط آب و هوایی ، مقاومت مکانیکی زیاد ، مقاومت شیمیایی ، پایداری ابعادی ، قابلیت بازیافت و آزادی عمل در طراحی است .
این روش در صنعت حمل و نقل نیز کاربردهای فراوانی دارد . میزان مصرف آن در اروپا در سال 1999 معادل 67 هزار تن شامل بدنه خودرو ، قطعات با استحکام زیاد ، بدنه قطارهای سریع السیر ، قطعات کامیون و اتوبوس بوده است . علت استفاده از SMC در صنایع حمل و نقل وزن کم محصول ، پایداری ابعادی ، آزادی عمل در طراحی ، توانایی تولید قطعه با کیفیت سطحی A ، هزینه کم سرمایه گذاری نسبت به تولید قطعه فلزی ، سرعت عمل در مونتاژ ، مقاومت در برابر شرایط آب و هوایی و تولید قطعه با ضخامت های متغیر است .
روش SMC در صنعت ساختمان نیز به کار گرفته شده است . به طوری که میزان مصرف آن در اروپا در سال 1999 معادل 41 هزارتن شامل ساخت پانل های ساختمانی ، حمام آماده ، صندلی ، میز و سایر موارد بوده است .
2- روش تولید BMC
Bulk Moulding Compound یا BMC ترکیبی از خانواده گرما سخت های تقویت شده با الیاف شیشه است که طول الیاف در آن 6 میلی متر 12-4 میلی متر و میزان الیاف در خمیر بین ده تا حداکثر بیست درصد است . فرآیند تولید قطعه BMC شامل سه مرحله است . تهیه خمیر BMC ، تولید قطعه قالب گیری و عملیات تکمیلی . تهیه خمیر BMC بدین شکل است که ابتدا مواد اولیه مطابق فرمولاسیون درون مخلوط کن با دور بالا مخلوط و پس از این که خمیر به دست آمده به گرانروی مناسب رسید به مخلوط کن دیگری از نوع دو باز و با تیغه Z پمپ می شود . سپس به آن غلیظ کننده Thickener و الیاف شیشه به طول 6-4 میلی متر اضافه و مخلوط می شوند . خمیر حاصل درون فیلم پلی اتیلنی بسته بندی می شود و پس از حدود سه الی پنج روز ، محصول آماده عملیات قالب گیری است . تکه های BMC آماده درون قالب گرم فولادی قرار می گیرند و پرس طی دو مرحله بسته و دو مرحله فشار اعمال می شود . در نهایت ضمن عملیات پخت درون قالب ، قطعه تولید می شود .
تجهیزات مورد نیاز عبارتند از : پرس هیدرولیک با قابلیت Close speed در دو مرحله مرحله اول mm/s 250-100 و مرحله دوم mm/s 20-5/2 و قابلیت اعمال فشار در دو مرحله و قالب از جنس فولاد با قابلیت گرم شدن بوسیله الکتریسیته یا روغن .
مزایای این روش عبارتند از : تولید در حجم زیاد ، امکان ساخت قطعات ساده و پیچیده ، تولید قطعه با کیفیت سطحی A ، هزینه بسیار کم نیروی انسانی به ازای واحد محصول و بهای کم محصول تمام شده و معایب آن شامل نیاز به سرمایه گذاری زیاد در عملیات پیچیده بازیافت نسبت به گرمانرم ها است .
3- روش تولید GMT
Glass Mat reinforced Thermoplastic یا GMT ترکیبی از خانواده گرمانرم های معمولا ً پلی پروپیلن تقویت شده با الیاف شیشه اند که در آن الیاف شیشه به صورت مت یا تک جهته استفاده می شود . فرآیند تولید قطعه GMT شامل چهار مرحله است : تهیه الیاف مت مخصوص GMT ، تهیه ورق GMT ، تولید قطعه قالب گیری و عملیات تکمیلی . در این روش یک blank GMT گرمانرم PP درون کوره قرار داده شده و جهت آماده سازی عملیات قالب گیری گرم می شود . سپس با قرار دادن آن درون قالب و بسته شدن پرس طی دو مرحله و اعمال فشار در یک مرحله ، قطعه تولید می شود .
تجهیزات مورد نیاز عبارتند از : پرس هیدرولیک با قابلیت Close speed در دو مرحله مرحله اول mm/s 500-200 ، مرحله دوم mm/s 20-10 و قابلیت اعمال فشار دریک مرحله ، قالب از جنس فولاد یا آلومینیوم با قابلیت تثبیت درجه حرارت و کوره از نوع هوای گرم یا مادون قرمز .
مزایای روش GMT عبارتند از : تولید در حجم زیاد ، امکان ساخت قطعات ساده و پیچیده ، هزینه بسیار کم نیروی انسانی به ازای محصول ، قابلیت بازیافت ، تنوع در محصولات ، قیمت متوسط محصول و امکان استفاده از ربات جهت اتوماسیون کامل تولید و معایب آن شامل نیاز به سرمایه گذاری زیاد ، عدم توانایی تولید محصول با کیفیت سطحی A و قابلیت اشتعال است .
4- روش تولید LFT
روش های مختلفی وجود دارد که اساس همگی آنها ترکیب زمینه پلی پروپیلن یا انواع دیگر گرمانرم ها با الیاف شیشه بلند درون اکسترو در طی دو مرحله و سپس آماده سازی آن و قرار دادن ورق آماده درون پرس ، بسته شدن پرس طی دو مرحله و اعمال فشار در یک مرحله است .
تجهیزات مورد نیاز عبارتند از : اکسترودر ، پرس هیدرولیک و قالب از جنس فولاد یا آلومینیوم با قابلیت تثبیت درجه حرارت .
مزایای روش LFT عبارتند از : تولید در حجم زیاد ، امکان ساخت قطعات ساده و پیچیده ، هزینه بسیار کم نیروی انسانی به ازای محصول ، قابلیت بازیافت ، تنوع در محصولات ، قیمت کم محصول ، امکان استفاده از ربات جهت اتوماسیون کامل تولید و معایب آن شامل نیاز به سرمایه گذاری زیاد ، عدم توانایی تولید محصول با کیفیت سطحی A و قابلیت اشتعال است .
5- روش تولید RTM
تزریق رزین به داخل یک قالب بسته معمولا ً قالب کامپوزیتی که الیاف شیشه ویژه این روش قبلا ً درون آن قرار گرفته است .
تجهیزات مورد نیاز این روش عبارتند از : قالب بسته معمولا ً از جنس کامپوزیت ، دستگاه تزریق رزین ، دستگاه خلأ ، بالابر و لوازم مناسب برش و یا شکل دهی الیاف .
از مزایای روش RTM می توان به ساخت قطعات با ابعاد بزرگ ، نیاز به سرمایه گذاری اولیه کم قالب و تجهیزات ، قابلیت تولید قطعه با کیفیت سطحی A و مشخصات مکانیکی مناسب و از معایب آن به عدم قابلیت تولید قطعات پیچیده ، قیمت تمام شده متوسط جهت محصول ، عملیات پیچیده تر بازیافت نسبت به گرمانرم ها اشاره کرد .
استفاده از تمامی مطالب سایت تنها با ذکر منبع آن به نام سایت علمی نخبگان جوان و ذکر آدرس سایت مجاز است
استفاده از نام و برند نخبگان جوان به هر نحو توسط سایر سایت ها ممنوع بوده و پیگرد قانونی دارد
vBulletin® v4.2.5, Copyright ©2000-2025, Jelsoft Enterprises Ltd.