PDA

توجه ! این یک نسخه آرشیو شده میباشد و در این حالت شما عکسی را مشاهده نمیکنید برای مشاهده کامل متن و عکسها بر روی لینک مقابل کلیک کنید : شیمی تجزیه



ghasem motamedi
2nd January 2010, 10:48 PM
موضوع مطلب: مقدمه شیمی تجزیه
(http://www.metallurgyis.ir/ftopic-quote-76.html)



دید کلی
شیمی تجزیه نقش حیاتی را در توسعه علوم مختلف به عهده دارد، لذا ابداع فنون جدید تجزیه و بسط و تکامل روشهای تجزیه شیمیایی موجود ، آنقدر سریع و گسترده است که اندکی درنگ در تعقیب رویدادهای تازه سبب بوجود آمدن فاصله‌های بسیار زیاد علمی خواهد شد. نقش این فنون در فعالیتهای تولیدی روز به روز گسترده‌تر و پردامنه‌تر می‌گردد. امروزه ، کنترل کیفیت محصولات صنعتی و غیر صنعتی ، جایگاه ویژه‌ای دارد که اساس این کنترل کیفیت را تجزیه‌های شیمیایی انجام شده به کمک روشهای مختلف تجزیه‌ای تشکیل می‌دهد.

سیر تحولی و رشد
اصولا توسعه و تغییر پایدار در فنون و روشهای تجزیه وجود دارد. طراحی دستگاه بهتر و فهم کامل مکانیسم فرآیندهای تجزیه‌ای ، موجب بهبود پایدار حساسیت ، دقت و صحت روشهای تجزیه‌ای می‌شوند. چنین تغییراتی به انجام تجزیه‌های اقتصادی‌تر کمک می‌کند که غالبا به حذف مراحل جداسازی وقت گیر ، منجر می‌شوند. باید توجه داشت که اگر چه روشهای جدید تیتراسیون مانند کریوسکوپی ، Pressuremetriz ، روشهای اکسیداسیون _ احیایی و استفاده از الکترود حساس فلوئورید ابداع شده‌اند، هنوز از روشهای تجزیه وزنی و تجزیه جسمی (راسب کردن ، تیتراسیون و استخراج بوسیله حلال) برای آزمایشهای عادی استفاده می‌شود.

به هر حال در چند دهه اخیر ، تکنیکهای سریعتر و دقیق‌ترِی بوجود آمده‌اند. در میان این روشها می‌توان به اسپکتروسکوپی ماده قرمز ، ماورای بنفش و اشعه X اشاره کرد که از آنها برای تشخیص و تعیین مقدار یک عنصر فلزی با استفاده از خطوط طیفی جذبی یا نشری استفاده می‌گردد. سایر روشها عبارتند از:



کالریمتری (رنگ سنجی) که به توسط آن یک ماده در محلول بوسیله شدت رنگ آن تعیین می‌شود.
انواع کروماتوگرافی که به توسط آنها اجزای یک مخلوط گازی بوسیله آن از درون ستونی از مواد متخلل یا از روی لایه‌های نازک جامدات پودری تعیین می‌گردند.
تفکیکی محلولها در ستونهای تبادل یونی
آنالیز عنصر ردیاب رادیواکتیو.


ضمنا میکروسکوپی الکترونی و اپتیکی ، اسپکترومتری جرمی ، میکروآنالیز ، طیف‌سنجی رزونانس مغناطیسی هسته‌ای (NMR) و رزونانس چهار قطبی هسته نیز در همین بخش طبقه بندی می‌شوند.

خودکارسازی روشهای تجزیه‌ای در برخی موارد با استفاده از رباتهای آزمایشگاهی ، اهمیت روزافزونی پیدا کرده است. چنین شیوه‌ای ، انجام یکسری تجزیه‌ها را با سرعت ، کارایی و دقت بهتر امکانپذیر می‌سازد. میکروکامپیوترها با قابلیت شگفت‌انگیز نگهداری داده‌ها و بسته‌های نرم افزار گرافیکی بطور قابل ملاحظه‌ای موجبات جمع آوری ، نگهداری ، پردازش ، تقوبت و تفسیر داده‌های تجزیه‌ای را فراهم می‌آورند.
انواع تجزیه
وقتی آزمایش به شناسایی یک یا چند چیز جز از یک نمونه (شناسایی مواد) محدود می‌گردد، تجزیه کیفی نامیده می‌شود، در حالی که اگر آزمایش به تعیین مقدار یک گونه خاص موجود در نمونه (تعیین درصد ترکیب در مخلوطها یا اجزای ساختمانی یک ماده خالص) محدود گردد، تجزیه کمی نامیده می‌شود. گاهی کسب اطلاعاتی در زمینه آرایش فضایی اتمها در یک مولکول یا ترکیب بلورین ضروری است، یا تاکید حضور یا موقعیت برخی گروههای عامل آلی در یک ترکیب مورد تقاضا است، چنین آزمایشهایی تحت عنوان تجزیه ساختمانی نامیده می‌شوند و ممکن است با جزئیاتی بیش از یک تجزیه ساده مورد توجه قرار گیرند.

ماهیت روشهای تجزیه‌ای
روشهای تجزیه‌ای معمولا به دو دسته کلاسیک و دستگاهی طبقه بندی می‌شوند. روشهای کلاسیک شامل روشهای شیمیایی مرطوب ، نظیر وزن سنجی و عیار سنجی است. در واقع تفاوت اساسی بین روشهای دو دسته وجود ندارد. همه آنها مشتمل بر وابستگی یک اندازه گیری فیزیکی به غلظت آنالیت می‌باشند. در حقیقت روشهای تجزیه‌ای محدودی وجود دارند که صرفا دستگاهی‌اند و یا بیشتر آنها متضمن مراحل شیمیایی متعددی قبل از انجام اندازه گیری دستگاهی هستند.

کاربردهای شیمی تجزیه
کنترل کیفیت محصول
بیشتر صنایع تولیدی نیازمند به تولید با کیفیت یکنواخت هستند. برای کسب اطمینان از برآورده شدن این نیازمندی مواد اولیه و همچنین محصول نهایی تولید ، مورد تجزیه‌های شیمیایی وسیعی قرار می‌گیرند.

نمایش و کنترل آلوده کننده‌ها
فلزات سنگین پسمانده‌های صنعتی و حشره کشهای آلی کلردار ، دو مشکل کاملا شناخته شده مربوط به ایجاد آلودگی هستند. به منظور ارزیابی چگونگی توزیع و عیار یک آلوده کننده در محیط ، به یک روش تجزیه‌ای حساس و صحیح نیاز است و در کنترل پسابهای صنعتی ، تجزیه شیمیایی روزمره حائز اهمیت است.

مطالعات پزشکی و بالینی
عیار عناصر و ترکیبات مختلف در مایعات بدن ، شاخصهای مهمی از بی نظمی‌های فیزیولوژیکی می‌باشند. محتوی قند بالا در ادرار که نشانه‌ای از یک حالت دیابتی است و وجود سرب در خون ، از شناخته‌ترین مثالها در این زمینه می‌باشد.

عیارگیری
از دیدگاه تجارتی در برخورد با مواد خام نظیر سنگهای معدنی ، ارزش سنگ معدن ، از روی فلز موجود در آن تعیین می‌شود. این موضوع ، مواد با عیار بالا را نیز غالبا شامل می‌شود. بطوری که حتی تفاوت کم در غلظت می‌تواند از نظر تجاری تاثیر قابل ملاحظه‌ای داشته باشد. بنابراین یک روش تجزیه‌ای قابل اعتماد و صحیح از اهمیت اساسی برخوردار است.

آینده شیمی تجزیه
بروز مشکلات تجزیه‌ای در شکلهای جدیدش ادامه دارد. میزان تقاضای مربوط به انجام تجزیه در ابعاد وسیع توسط بسترهای دستگاهی بطور مداوم در حال افزایش است. کاوشهای فضایی ، نمونه‌های گمانه زنی و مطالعات اعماق دریاها مثالهایی از نیازهای قابل طرح می‌باشند. در دیگر زمینه‌ها نظیر مطالعات محیطی و بالینی ، فرم شیمیایی و دقیق یک عنصر در یک نمونه و نه غلظت کلی آن ، اهمیت فزاینده‌ای پیدا کرده است. دو مثال کاملا شناخته شده در این زمینه ، میزان سمیت بسیار زیاد ترکیبات آلی جیوه و سرب در مقایسه با ترکیبات مشابه معدنی است.

================================================== ===
رده بندی روشهای تجزیه‌ای
رده بندی روشهای تجزیه‌ای معمولاً بر طبق خاصیتی است که در فرآیند اندازه گیری نهایی مشاهده می‌شود. در جدول زیر فهرستی از مهم‌ترین این خاصیتها و همچنین نام روشهایی که مبتنی بر این خاصیتها هستند، دیده می‌شود. بر این نکته توجه داشته باشیم که تا حدود سال ۱۹۲۰ تقریباً تمام تجزیه‌ها براساس دو خاصیت جرم و حجم قرار داشتند. در نتیجه، روشهای وزنی و حجمی به نام روشهای کلاسیک تجزیه‌ای شهرت یافته‌اند.

بقیه روشها شامل روشهای دستگاهی است. علاوه بر تاریخ توسعه این روشها، جنبه‌های معدودی روشهای دستگاهی را از روشهای کلاسیک جدا و متمایز می‌سازند. بعضی از تکنیکهای دستگاهی حساستر از تکنیکهای کلاسیک هستند. ولی بعضیها حساس‌تر نیستند. با ترکیب خاصی از عناصر یا ترکیبات، یک روش دستگاهی ممکن است بیشتر اختصاصی باشد. در مواردی دیگر، یک روش حجمی یا وزنی، کمتر در معرض مزاحمت قرار دارد. مشکل است که گفته شود که کدامیک از نظر صحت، راحتی و صرف زمان بر دیگری برتری دارد.

همچنین این مساله درست نیست که روشهای دستگاهی، الزاما دستگاههای گرانتر یا پیچیده‌تری را بکار می‌گیرند و در حقیقت، استفاده از یک ترازوی خودکار نوین در یک تجزیه وزنی شامل دستگاه ظریفتر و پیچیده‌تری در مقایسه با بسیاری از روشهای دیگری است که در جدول زیر ثبت شده‌اند.

روشهای تجزیه‌ای مبتنی بر اندازه گیری خاصیت خاصیت فیزیکی که اندازه گیری می‌شود. وزنی جرم حجمی حجم طیف نورسنجی (اشعه ایکس، ماوراء بنفش، مرئی، IR)؛ رنگ سنجی ؛ طیف بینی اتمی ؛ رزونانس مغناطیسی هسته و رزونانس اسپین الکترون جذب تابش طیف بینی نشری (اشعه ماوراء بنفش، ایکس، مرئی)؛ نور سنجی شعله‌ای؛ فلوئورسانس (اشعه ایکس، فرابنفش و مرئی) ؛ روشهای رادیوشیمیایی نشر تابش کورسنجی، نفلومتری، طیف بینی رامان پراکندن تابش شکست سنجی و تداخل سنجی شکست تابش روشهای پراش اشعه ایکس و الکترون پراش تابش قطبش سنجی، پاشندگی چرخش نوری و دو رنگی نمایی دورانی چرخش تابش پتانسیل سنجی، پتانسیل سنجی با زمان پتانسیل الکتریکی رسانا سنجی رسانایی الکتریکی پلاروگرافی، تیتراسیونهای آمپرسنجی جریان الکتریکی کولن سنجی کمیت الکتریسیته طیف سنجی جرمی نسبت جرم به بار
روشهای رسانایی حرارتی و آنتالپی خواص گرمایی روشهای جداسازی در بیشتر موارد، تجزیه یک نمونه از ماده، قبل از اندازه گیری فیزیکی نهایی آن، ابتدا احتیاج به یک یا چند مرحله زیر دارد:

نمونه برداری، برای فراهم کردن نمونه‌ای که ترکیب آن، نماینده توده ماده باشد.

تهیه و انحلال مقدار معینی از نمونه

جداسازی گونه مورد اندازه گیری از اجزاء سازنده‌ای که در سنجش نهایی مزاحمت ایجاد می‌کنند.

این مراحل معمولاً بیشتر از خود اندازه گیری نهایی تولید مزاحمت می‌کنند و خطاهای بزرگ‌تری را باعث می‌شوند. روشهای جداسازی به این دلیل مورد احتیاج‌اند که خواص فیزیکی و شیمیایی مناسب برای اندازه گیری غلظت معمولاً بین چندین عنصر یا ترکیب مشترک است. در بررسی مواد بسیار نزدیک و مرتبط به هم، مشکل جداسازی بیشترین اهمیت را می‌یابد و لذا نیاز به تکنیکهایی نظیر کروماتوگرافی، تقطیر جزء به جزء، استخراج ناهمسو و یا الکترولیز در پتانسیل کنترل شده دارد.

انتخاب روش برای یک مسئله تجزیه‌ای جدول مذکور، حاکی از این است که برای شیمیدانی که با یک مسئله تجزیه‌ای روبرو است، غالبا روشهای متعددی وجود دارند که وی می‌تواند یکی از آنها را انتخاب کند. مدت زمانی که او باید برای کار تجزیه صرف کند و کیفیت نتایج حاصل، بنحوی حساس، به این انتخاب بستگی دارد. شیمیدان برای اخذ تصمیم خود در مورد انتخاب روش، باید پیچیدگی ماده مورد تجزیه، غلظت گونه مورد نظر، تعداد نمونه‌هایی که باید تجزیه شوند و دقت مورد نیاز را در نظر گیرد.

پس از این، انتخاب وی به دانش او در مورد اصول اساسی که زیر بنای هر یک از این روشهای قابل دسترسی است و در نتیجه قدرت و محدودیت این روشها بستگی خواهد داشت.

دستگاهوری در تجزیه
در مفهومی بسیار وسیع، یک دستگاه که برای تجزیه شیمیایی مورد استفاده قرار می‌گیرد، داده‌های کمی تولید نمی‌کند، بلکه در عوض بسادگی اطلاعات شیمیایی را به شکلی تبدیل می‌کند که آسانتر قابل مشاهده‌است. بنابراین به دستگاه می‌توان به صورت یک وسیله ارتباطی نگریست. دستگاه این هدف را در مراحل مختلف زیر انجام می‌دهد:

تولید یک علامت

تبدیل این علامت به علامتی با ماهیت متفاوت (تبدیل نامیده می‌شود).

تقویت علامت تبدیل شده

ارائه این علامت به صورت یک جابجایی بر روی یک صفحه مندرج یا صفحه یک ثبات.

لزومی ندارد که تمام این مراحل مجموعا در هر دستگاه انجام گیرد. در نتیجهٔ ظهور این همه مدارات الکترونیکی در آزمایشگاه، یک شیمیدان امروزی خود را با این سوال روبرو می‌بیند که چه مقدار الکترونیک باید بداند تا بتواند موثرترین استفاده را از وسایل موجود برای تجزیه، بکند. مهم برای یک شیمیدان این است که قسمت عمده کوشش خود را به اصول شیمیایی، اندازه گیریها و محدودیتها و قوتهای ذاتی آن معطوف دارد.
موضوع مطلب: رفراکتومتر
(http://www.metallurgyis.ir/ftopic-quote-192.html)



ضریب شکست مانند دانسیته ، نقطه ذوب و نقطه جوش یکی از ثابت های فیزیکی کلاسیک است که می تواند جهت توصیف یک گونه شیمیایی بکار رود . در حالیکه ضریب شکست یک خاصیت غیرویژه است ، ولی تعداد کمی از اجسام هستند که در یک طول موج و دمای معین ، ضرایب شکست یکسانی دارند ، بنابراین این خاصیت جهت تائید هویت یک ترکیب و تعیین خلوص آن مفید است . همچنین اندازه گیری ضریب شکست همراه با دیگر اندازه گیریها اطلاعاتی در مورد ساختمان و وزن مولکولی اجسام بدست می دهد .

امروزه رفراکتومتر در صنعت کاربرد زیادی پیدا کرده است ، بطوریکه از این دستگاه برای تعیین غلظت کربوهیدراتها ، گوگرد در لاستیک ، سیلیسیوم در شیشه های سیلیکاتی ، تخمین درجه سیرناشدگی روغنهای نباتی و همچنین تعیین درصد کربن در ترکیبات آلی و نفتی بکار می رود .



FTIR اسپکتروفتومتر

ناحیه مادون قرمز طیف ، تابشی با اعداد موجی در گستره از 33Cm-1 تا 13000 و یا طول موجهای از 75/0 تا µ 300 را در بر می گیرد . مع الذالک اکثر کاربردهای اندازه گیری جذبی مادون قرمز ، به نواحی از حدود 4000 تا Cm-1667 ( 5/2 تا 15 میکرون ) محدود می شوند .

برای اینکه تابش مادون قرمز توسط یک مولکول جذب شود ، ممان دوقطبی این مولکول باید در نتیجه حرکت چرخشی و ارتعاشی آن متحمل یک تغییر کلی گردد و از این خاصیت برای شناسایی گروههای عاملی نظیر گروههای کربونیل – هیدروکسی و سایر گروههای قطبی استفاده می شود .

از آنجائیکه تمام گروههای عاملی در یک فرکانس خاصی در FTIR جذب نشان می دهند . از دستگاه FTIR برای وجود و یا عدم وجود یک یا چند گروه عاملی خاص در یک ترکیب استفاده می شود . لازم بذکر است که امروزه FTIR بطور وسیعی برای شناسایی ترکیبات آلی بکار می رود



ویسکومتر

ویسکوزیته یکی از خصوصیات سیالات است که میزان مقاومت آنها در مقابل جاری شدن می باشد.

واحد اندازه گیری ویسکوزیته Centipoise یا CP می باشد. دوک فلزی که از دستگاه آویزان است پس از قرار گرفتن در مایع، شروع به چرخیدن می کند که سرعت چرخیدن آن در مایع، ویسکوزیته مایع را تعیین می کند.
============
موضوع مطلب: قابلیت انحلال مواد
(http://www.metallurgyis.ir/ftopic-quote-191.html)



میزان انحلال پذیری یک ماده حل شونده در یک حلال به طور قابل توجهی به ماهیت و قدرت نیروهای جاذبه بین ذرات حل شونده - حل شونده ، حلال - حلال و حل شده - حلال بستگی دارد. بیشترین انحلال وقتی مشاهده می‌شود که این نیروها همانند باشند، یعنی نخستین قاعده انحلال پذیری این است که "نظیر در نظیر حل می شود." بطور کلی ، مواد قطبی فقط در حلالهای قطبی و مواد ناقطبی فقط در حلالهای ناقطبی حل می‌شوند. یعنی مواد ناقطبی و مواد قطبی معمولا امتزاج ناپذیرند.

مثلا تتراکلریدکربن (یک ماده ناقطبی) در آب نامحلول است. زیرا نیروی جاذبه به یک مولکول آب نسبت به یک مولکول دیگر قویتیر از نیروی جاذبه بین یک مولکول تتراکلریدکربن و یک مولکول آب است از این رو، مولکولهای تتراکلریدکربن رانده می‌شوند و این دو ماده ، یک سیستم مایع دو لایه‌ای تشکیل می‌دهد.

بلورهای مشبک (مثلا الماس) که در آنها اتمهای تشکیل دهنده بلور با پیوند کووالانسی به یکدیگر پیوسته‌اند، در تمام مایعات نامحلول‌اند. این ساختار بلورین بسیار پایدارتر از آن است که با فرآیند انحلال از هم بگسلد یعنی هیچ جاذبه بالقوه بین حلال - حل شونده نمی‌تواند به قدرت پیوند کووالانسی موجود در این نوع بلور برسد.

فرایند انحلال
میان مولکولهای کووالانسی ناقطبی ، تنها نیروهای بین مولکولی موجود ، نیروی لاندن است. ولی نیروهای جاذبه بین مولکولهای کووالانسی قطبی علاوه بر نیروهای لاندن ، نیروهای دو قطبی - دو قطبی را نیز شامل می‌شود. در مواردی که پیوند هیدروژنی وجود دارد، نیروهای بین مولکولی بطور غیر عادی قوی است. از آنجایی که مواد ناقطبی فقط در حلالهای ناقطبی حل می‌شوند، ید که یک ماده ناقطبی است، در تتراکلریدکربن حل می‌شود.

نیروی جاذبه بین مولکولهای I2 در ید جامد ، تقریبا از همان نوع و اندازه‌ای است که بین مولکولهای CCl4 در تتراکلریدکربن خالص وجود دارد و از این رو، جاذبه ای قابل توجه بین ید و تتراکلرید کربن ممکن می‌گردد و مولکولهای ید می‌توانند با مولکولهای تتراکلریدکربن ممزوج شوند و محلول حاصل یک مخلوط مولکولی بی نظم است. متیل الکل (CH3OH) و آب (هر دو ماده قطبی) به هر نسبت در یکدیگر حل می‌شوند. در محلول متیل الکل و آب ، مولکولهای CH3OH و H2O با پیوند هیدروژنی به هم پیوسته‌اند که در حالت مایع خالص نیز مولکولهای هر دو مایع بوسیله پیوند هیدروژنی به یکدیگر جذب می‌شوند.

مایعات قطبی (بویژه آب) می‌توانند حلال بسیاری از ترکیبات یونی باشند. یونهای مواد حل شده توسط مولکولهای قطبی با نیروی الکتروستاتیکی جذب می‌شوند، یعنی یونهای منفی توسط قطبهای مثبت مولکولهای حلال و یونهای مثبت توسط قطبهای منفی این مولکولها جذب می‌شوند. این جاذبه یون - دو قطبی ممکن است نیروهای نسبتا قوی باشند و موجب می‌شود که یونها از بلور جدا شده و در فاز مایع شناور شوند. یونهای حل شده آبپوشیده‌اند و در حالی که با غلافی از مولکولهای آب احاطه شده‌اند در محلول حرکت می‌کند.

اثر دما بر انحلال پذیری
اثر تغییر دما بر انحلال پذیری یک ماده به جذب شدن یا آزاد شدن گرما به هنگام تهیه محلول سیر شده آن ماده بستگی دارد. با استفاده از اصل لوشاتلیه می توان اثر تغییر دما بر روی انحلال پذیری یک ماده را پیش بینی کرد. اگر فرآیند انحلال ماده حل شونده ، فرآیندی گرماگیر باشد، انحلال پذیری آن ماده با افزایش دما افزایش می‌یابد.



حل شده موجود در محلول سیر شده <----> حل شونده جامد + انرژی



اگر انحلال ماده حل شونده فرآیندی گرماده باشد، با افزایش دما ، انحلال پذیری ماده حل شونده کاهش می‌یابد. معدودی از ترکیبات یونی ( مثل Na2CO3 , Li2CO3 ) بدین گونه عمل می‌کنند. علاوه بر این ، انحلال پذیری تمام گازها با افزایش دما ، کاهش پیدا می‌کند. مثلا با گرم کردن نوشابه‌های گازدار ، گاز دی‌اکسید کربن موجود در آنها از محلول خارج می‌شود. تغییر انحلال پذیری با تغییر دما به مقدار آنتالپی انحلال بستگی دارد. انحلال پذیری موادی که آنتالپی انحلال آنها کم است، با تغییر دما تغییر چندانی نمی‌کند.

اثر فشار بر انحلال پذیری
اثر تغییر فشار بر انحلال پذیری مواد جامد و مایع معمولا کم است ولی انحلال پذیری گازها در یک محلول با افزایش یا کاهش فشاری که به محلول وارد می‌شود، به میزان قابل توجهی تغییر می‌کند. "ویلیام هنری" در سال 1803 میلادی کشف کرد که مقدار گازی که در یک دمای ثابت در مقدار معینی از یک مایع حل می‌شود با فشار جزئی آن گاز در بالای محلول نسبت مستقیم دارد. فقط محلولهای رقیق در فشارهای نسبتا پایین از قانون هنری به خوبی پیروی می‌کنند. گازهایی که انحلال پذیری آنها بسیار زیاد است، عموما با حلال خود ترکیب می‌شود (مثلا گاز هیدروژن کلرید وقتی که حل می‌شود، با آن ترکیب شده و هیدروکلریک اسید تولید می‌کند). این محلولها از قانون هنری پیروی نمی‌کنند.

خون غواصها در عمق دریا تحت فشار نسبتا زیاد ویژه عمقی که در آن کار می‌کنند با هوا سیر می‌شود. اگر این فشار ، در اثر بالا آمدن سریع سطح آب به سرعت برداشته شود، هوا به سرعت از محلول خارج شده و حبابهایی را در سیستم جریان خون غواص ایجاد می‌کند. این حالت که "آمبولی هوایی" نام دارد، بر تحریکات عصبی و سیستم جریان خون اثر گذاشته و ممکن است مرگ آور باشد. برای پیشگیری از این حادثه از جو هلیوم و اکسیژن به جای هوا که بخش عمده آن اکسیژن و نیتروژن است استفاده می‌شود، زیرا انحلال پذیری هلیوم در خون و مایعات بدن بسیار کمتر از نیتروژن است.

تعادلهای انحلال
تعادل مایع - مایع (حل شدن برم در آب)
هر گاه 50 گرم برم را که مایعی است قرمز رنگ ، فرار و سمی در ظرف محتوی یک لیتر آب بریزیم، دو لایه قرمز و بی رنگ پدید می‌آید. با گذشت زمان برم در آب حل می‌شود و محلول کم کم پر رنگ می‌شود و بالاخره تغییر متوقف می‌شود. گر چه مایع برم هنوز در ته ظرف وجود دارد (در حدود 14 گرم). در این شرایط که محلول برم در مجاورت برم خالص قرار دارد و هیچگونه تغییری مشهود نیست، می‌گوییم سیستم در حال تعادل است. ویژگی مهم تعادل ، تغییر ناپذیری خواص ماکروسکوپی آن است. خواص ماکروسکوپی ، خواصی است که به مقدار زیادی از ماده وابسته است به اندازه‌ای که قابل مشاهده و اندازه گیری باشد و تغییرات آنها آشکار شود.

تعادل جامد - مایع (حل شدن نمک طعام در آب)
هر گاه مقداری زیادی بلورهای نمک طعام (در حدود 500 گرم) را به یک لیتر آب بیفزاییم و مخلوط را بهم بزنیم چون هم زدن را تا 10 دقیقه ادامه دهیم، خواهیم دید که مقدار زیاد نمک حل می‌شود و فقط 140 گرم آن باقی می‌ماند که با بهم زدن زیاد هم از وزن نمک موجود در ته ظرف کاسته نمی‌شود. بنابراین می‌گوییم که به حالت ثابتی رسیده و سیستم در حال تعادل است، زیرا خواص ماکروسکوپی آن تغییر نمی کند. در حقیقت پدیده تعادل در سیستم جامد - مایع آب نمک شامل دو فرآیند است که در حال رقابت با یکدیگرند.

در ابتدا که نمک را در آب ریختیم، فرآیند حل شدن که شامل یونیزه شدن NaCl به کاتیونهای سدیم و آنیونهای کلر است، اغلب در یک جهت معینی از بلور به سوی محلول انجام می‌گیرد. با پیشرفت فرآیند حل شدن و افزایش غلظت یونها در محلول ، واکنش معکوس نیز امکان پذیر می‌شود. یعنی افزوده شدن یونهای محلول به بلور (تبلور یا رسوب کردن) انجام می‌شود. مادام که موازنه این دو فرایند برقرار است، مقدار نمک حل شده در واحد حجم محلول ثابت خواهد بود و سیستم در تعادل انحلال پذیری باقی خواهد ماند.

تعادل گاز- مایع (حل شدن گاز CO2 در آب)
انحلال گازها در مایعات با دما نسبت عکس و با فشار نسبت مستقیم دارد. مکانیسم حل شدن گاز در مایع ، کم و بیش مشابه حل شدن جامد در مایع و مایع در مایع است. هر گاه بوسیله یک لوله گاز دی‌اکسید کربن را در آب موجود در یک ظرف بدمیم، حبابهای درشت گاز که وارد آب می‌شوند، بتدریج کوچک شده و حتی ممکن است ناپدید شوند و این نشانه حل شدن جزئی آنهاست. با ادامه دمیدن ، به مرحله‌ای می‌رسیم که آب بوسیله گاز سیر می‌شود و دیگر حبابهای گاز بدون کاهش حجم خارج می‌شوند. در این شرایط در دما و فشار هوای اطاق ، غلظت گاز در آب ثابت می‌ماند و به عبارتی تعادل زیر برقرار می‌شود:
موضوع مطلب: سرعت واکنش در شیمی
(http://www.metallurgyis.ir/ftopic-quote-190.html)



سرعت واکنش

سرعت واکنش ، عبارت از تغییر غلظت هر یک از مواد اولیه یا مواد حاصل نسبت به زمان انجام واکنش است.

نگاه کلی

سرعت یک واکنش ، روند تبدیل مواد واکنش دهنده به محصول در مدت زمان معینی را نشان می‌دهد. سرعت واکنشها یکی از مهمترین بحثها در سینیتیک شیمیایی است. شیمیدانها همیشه دنبال راهی هستند که سرعت واکنش مفید را بالا ببرند تا مثلا در زمان کوتاه بازده بالایی داشته باشند و یا در پی راهی برای کاهش سرعت یا متوقف ساختن برخی واکنشهای مضر هستند. بعنوان مثال رنگ کردن سطح یک وسیله آهنی روشی برای متوقف ساختن و یا کم کردن سرعت زنگ زدگی و جلوگیری از ایجاد اکسید آهن است.

طبقه بندی واکنشها برحسب سرعت

هدف از مطالعه سرعت یک واکنش این است که بدانیم آن واکنش چقدر سریع رخ می‌دهد. ترمودینامیک شیمیایی ، امکان وقوع واکنش را پیش‌بینی می‌کند، اما سینتیک شیمیایی چگونگی انجام یک واکنش و مراحل انجام آن و سرعت پیشرفت واکنش را بیان می‌کند. از لحاظ سرعت ، واکنشها به چند دسته تقسیم می‌شوند:

۱. واکنشهای خیلی سریع که زمان انجام این واکنشها خیلی کم و حدود ۰,۰۰۰۱ ثانیه است.

۲. واکنشهای سریع که زمان انجام این واکنشها کم و در حدود حساسیت انسان به زمان (ثانیه) است.

۳. واکنشهای معمولی ، اکثر واکنشهایی که در آزمایشگاهها با آنها سر و کار داریم از این نوع هستند و در حدود دقیقه‌ها یا چند ساعت طول می‌کشند.

۴. واکنشهای کند که در حدود روزها و هفته‌ها طول می‌کشند.

۵. واکنشهای خیلی کند که در حدود سالها و قرنها طول می‌کشند.

فقط تعداد اندکی از واکنشهای شیمیایی در سراسر فرآیند با سرعت ثابتی پیش می‌روند. بیشتر واکنشها در آغاز واکنش که غلظت واکنش‌دهنده‌ها بالا است با سرعت پیش رفته و با کم شدن غلظت از سرعت کاسته شده و با کامل شدن واکنش به صفر می‌رسد. برخی از واکنشها هم سرعت آنها پس از مدتی ثابت می‌ماند. چنین واکنشهایی ، واکنشهای تعادلی نام دارند.

عوامل مؤثر بر سرعت واکنش

عوامل گوناگونی بر سرعت واکنش تاثیر دارند که بطور مختصر در مورد هر کدام توضیحی ارایه می‌شود.

حالت فیزیکی واکنش دهنده‌ها
برای انجام یک واکنش ، واکنش‌دهنده‌ها باید با هم مخلوط شوند تا در مجاورت همدیگر قرار گیرند. اگر واکنش‌دهنده‌ها هم‌فاز باشند، یعنی همگی گاز یا بصورت حل شده در حلالی باشند، واکنش با سرعت بیشتری رخ می‌دهد.

غلظت
غلظت بیشتر واکنش‌دهنده‌ها باعث ایجاد برخورد بیشتر بین آنها می‌شود و هر چه تعداد برخوردها بیشتر باشد، تعداد برخوردهای موثر هم بالا می‌رود بنابراین سرعت واکنش هم بیشتر می‌شود.

دما
از مهمترین عوامل مؤثر بر سرعت واکنشهای شیمیایی است. در برخی از واکنشها با افزایش چند درجه سانتی‌گراد ، سرعت واکنش ممکن است چند برابر بیشتر شود. البته استثناهایی هم وجود دارد.

کاتالیزور
کاتالیزورها سرعت یک واکنش شیمیایی را که از لحاظ ترمودینامیکی قابل انجام است، تغییر می‌دهند. بنابراین نمی‌توانند واکنشهایی را که از نظر ترمودینامیک امکان‌پذیر نیستند، به انجام برسانند. کاتالیزورها با پیش بردن یک واکنش از مسیر دیگر انرژی فعالسازی را کم کرده و باعث افزایش سرعت واکنشها می‌شوند.

نقش برخورد در سرعت واکنش

برای انجام یک واکنش شیمیایی ، باید مولکولهای واکنش‌دهنده آنقدر به هم نزدیک شوند تا بین آنها برخورد ایجاد شود. این برخوردها وقتی منجر به انجام واکنش می‌شوند که مؤثر باشند، یعنی جهت‌گیری و انرژی برخوردها طوری باشد که بر اثر برخورد برخی پیوندها شکسته شده و پیوندهای جدیدی تشکیل شوند که نتیجه این عمل تولید مولکولهای جدید یعنی محصول است.

سرعت هر واکنش شیمیایی متناسب است با تعداد برخورد مولکولها در واحد زمان. اگر تمام برخوردهای مولکولها منجر به انجام واکنش شود، مدت زمان انجام واکنشها باید خیلی کمتر باشد. طبق محاسبات مختلف از هر ۱۰۱۴ برخورد ، فقط یک برخورد به واکنش منجر می‌شود. یعنی برخوردهایی موجب انجام واکنش می‌شوند که انرژی حاصل از برخورد برابر یا بیشتر از انرژی فعالسازی باشد.

انرژی فعالسازی

حداقل انرژی لازم که بایستی واکنش‌دهنده‌ها بگیرند تا بتوانند وارد واکنش شوند. انرژی فعالسازی برای تمام واکنش‌های شیمیایی چه گرماگیر و چه گرماده وجود دارد و معمولا از انرژی برخورد میان مولکولها تامین می‌شود.
========================
موضوع مطلب: تیتراسیون
(http://www.metallurgyis.ir/ftopic-quote-79.html)



روشی که توسط آن ، محلولی با غلظت مشخص به محلولی دیگر اضافه می‌شود تا واکنش شیمیایی بین دو ماده حل شده کامل گردد، تیتراسیون نامیده می‌شود.


مقدمه
تیتر کردن از روش‌های تجزیه حجمی است. در تجزیه حجمی ابتدا جسم را حل کرده و حجم معینی از محلول آن را با محلول دیگری که غلظت آن مشخص است که همان محلول استاندارد نامیده می‌شود، می‌سنجند. در تیتراسیون محلول استاندارد به‌طور آهسته از یک بورت به محلول حاوی حجم مشخص یا وزن مشخص از ماده حل شده اضافه می‌شود.

افزایش محلول استاندارد ، آنقدر ادامه می‌یابد تا مقدار آن از نظر اکی‌والان برابر مقدار جسم حل شده شود. نقطه اکی‌والان نقطه ای است که در آن ، مقدار محلول استاندارد افزوده شده از نظر شیمیایی برابر با مقدار حجم مورد نظر در محلول مجهول است. این نقطه را نقطه پایان عمل از نظر تئوری یا نقطه هم ارزی نیز می‌گویند.


مولاریته
نگاه کلی
مولاریته یا غلظت مولار که با (M) نشان داده می‌شود، عبارت است از تعداد وزن مولکول گرم (یا تعداد مول) از یک جسم حل شده در یک لیتر محلول. مول کمیت اساسی است که یک شیمیدان تجزیه با آن سر و کار زیادی دارند. یک مول برابر با 6.023X1023 مولکول از یک جسم است. اصطلاح مول در یک مفهوم وسیع برای توصیف مقادیر ترکیبات مولکولی ، عناصر آزاد و یونها بکار می‌رود. به بیان دیگر وزن تعداد 6.023X1023 عدد مولکول ، یون یا عنصر برابر با 1 مول مولکول ، یون یا عنصر است که به صورت مولکول گرم ، یون گرم یا عنصر گرم نامیده می‌شود.

تهیه محلولهای مولار
برای تهیه یک محلول مولار از یک ترکیب باید یک مول از آن را وزن کرده و به مقدار کافی به آن آب اضافه کنیم تا دقیقا یک لیتر محلول بدست آید. به عنوان مثال برای تهیه یک محلول 2M از اسید سولفوریک باید گرم 196.16=98.08×2 از اسید سولفوریک را در مقدار کافی آب حل کنیم تا یک لیتر محلول 2M اسید سولفوریک بدست آید. وقتی یک محلول مایع تهیه می‌کنیم، حجم محلول به ندرت مساوی مجموع حجمهای اجزا خالص سازنده آن است. معمولا حجم نهایی محلول بیشتر یا کمتر از مجموع حجمهای اجزا سازنده آن است.

از این رو برای تهیه یک محلول معین عملا نمی‌توانیم مقدار حلال لازم را پیش‌بینی کنیم. برای تهیه محلولهای مولار و سایر محلولهایی که بر اساس حجم کل است، معمولا از بالنهای حجم‌سنجی استفاده می‌شود. در این صورت برای تهیه یک محلول مقدار دقیق ماده حل شونده را در بالن جای می‌هیم و با دقت آن قدر آب می‌افزائیم و بطور مداوم و با احتیاط هم می‌زنیم تا سطح محلول به خط نشانه‌ای که روی گردن بالن مشخص شده برسد.

محاسبه غلظت یک محلول بر حسب مولاریته
برای محاسبه غلظت یک محلول بر حسب مولاریته ابتدا باید تعداد مولهای جسم حل شده را بدست آوریم. تعداد مولهای جسم حل شده از تقسیم کردن وزن آن (برحسب گرم) به وزن فرمولی بدست می‌آید.



اگر ماده حل شده به صورت مولکولی باشد، در آن صورت تعداد مول از فرمول وزن مولکولی/گرمهای ماده حل شده=تعداد مولها (مولکول حل شده) محاسبه می‌شود.


اگر بخواهیم تعداد مولهای یک یون را محاسبه کنیم، باید بجای وزن مولکولی وزن یون مربوطه را در فرمول قرار دهیم. یعنی وزن یونی/گرمهای ماده حل شده=تعداد مول‌ها (یون حل شده).


اگر ماده حل شده به صورت اتمی باشد، مثلا نقره فلزی در آن صورت تعداد مولها از فرمول وزن اتمی/گرمهای ماده حل شده = تعداد مولها (اتم حل شده) بدست می‌آید. بعد از بدست آوردن تعداد مولهای ماده حل شده با قرار دادن آن در فرمول غلظت مولار ، مولاریته محلول بدست می‌آید. یعنی داریم


لیتر محلول/میلی مولهای ماده حل شده= M

یا
لیتر محلول/تعداد مول‌های حل شده=M

وقتی غلظت محلول بر حسب مولاریته بیان می‌شود، محاسبه مقدار ماده حل شده موجود در یک نمونه معین از محلول آسان است. به عنوان مثال یک لیتر محلول 2 مولار دارای 2 مول ماده حل شده است. 500ml آن دارای یک مول ماده حل شده ، 100ml آن دارای 0.2 مول ماده حل شده است.

نکته مهم
تنها اشکال تعیین غلظتها بر اساس حجم محلول این است که چنین غلظتهایی با تغییر دما اندکی تغییر می‌کنند، زیرا تغییر دما موجب انقباض یا انبساط محلول می‌شود. بنابراین برای اینکه غلظت محلول تهیه شده دقیق‌تر باشد، باید محلول در دمایی که قرار است استفاده شود، تهیه شده و از بالن حجم ‌سنجی که در این دما مدرج شده است استفاده شود.
روش تیتر کردن
در عمل تیتر کردن ، محلول استاندارد را از یک بورت به محلولی که باید غلظت آن اندازه گرفته می‌شود، می‌افزایند و این عمل تا وقتی ادامه دارد تا واکنش شیمیایی بین محلول استاندارد و تیتر شونده کامل شود. سپس با استفاده از حجم و غلظت محلول استاندارد و حجم محلول تیتر شونده ، غلظت محلول تیتر شونده را حساب می‌کنند.

یک مثال
نقطه اکی‌والان در عمل تیتر کردن NaCl با نقره تیترات وقتی مشخص می‌شود که برای هر وزن فرمولی -Cl در محیط یک وزن فرمول +Ag وارد محیط عمل شده باشد و یا در تیتر کردن ، سولفوریک اسید (H2SO4 ) با سدیم هیدروکسید ( NaOH ) نقطه اکی‌والان وقتی پدید می‌آید که دو وزن فرمولی اسید و دو وزن فرمولی باز وارد محیط عمل شوند.

تشخیص نقطه اکی‌والان
نقطه اکی‌والان در عمل بوسیله تغییر فیزیکی ( مثلا تغییر رنگ ) شناخته می‌شود. نقطه ای که این تغییر رنگ در آن روی می‌دهد، نقطه پایان تیتر کردن است. در تیتراسیون اسید و باز شناساگرها برای تعیین زمان حصول نقطه اکی‌والان بکار می‌روند. تغییر رنگ معرف ، نشانگر نقطه پایانی تیتراسیون می‌باشد.



انواع تیتر کردن
بر حسب واکنش‌هایی که بین محلول تیتر شونده و استاندارد صورت می‌گیرد، تجزیه‌های حجمی (تیتراسیون) به دو دسته تقسیم می‌شوند:



روش‌هایی که بر اساس ترکیب یون‌ها هستند. یعنی تغییر ظرفیت در فعل و انفعالات مربوط به آن صورت نمی‌گیرد. این روش‌ها عبارت اند از:
واکنش‌های خنثی شدن یا واکنش‌های اسید و باز
واکنش‌های رسوبی
واکنش‌هایی که تولید ترکیبات کمپلکس می‌کنند.


روشهایی که بر اساس انتقال الکترون هستند؛ مانند واکنش‌های اکسایش و کاهش
تیتر کردن واکنش های اسید و باز یا خنثی شدن
تیتر کردن ، عبارت است از تعیین مقدار اسید یا باز موجود در یک محلول که با افزایش تدریجی یک باز به غلظت مشخص یا بر عکس انجام می‌گیرد. موقعی که محلول یک باز دارای یونهای -OH است به محلول اسید اضافه کنیم، واکنش خنثی شدن انجام می‌شود:



OH- + H3O+ -----> 2H2O


محاسبات
معمولا حجم مشخص (V) از محلول اسید با نرمالیته مجهول (N) انتخاب کرده ، به‌کمک یک بورت مدرج به‌تدریج محلو ل یک باز به نرمالیته مشخص (N) به آن اضافه می‌کنند. عمل خنثی شدن وقتی کامل است که مقدار اکی‌والان گرم های باز مصرفی برابر مقدار اکی‌والان گرم های اسید موجود در محلول شود.

برای این که عمل تیتراسیون بدقت انجام شود، باید عمل افزایش محلول باز درست موقعی متوقف گردد که تساوی فوق برقرار شود. روش معمول و همگانی برای تعیین پایان تیتراسیون استفاده از شناساگرهاست. دستگاه PH متر نیز برای محاسبات دقیق در تعیین نقطه اکی والان کاربرد دارد.
موضوع مطلب: طیف سنج جرمی
(http://www.metallurgyis.ir/ftopic-quote-78.html)



تاریخچه
اصول طیف سنجی جرمی ، جلوتر از هر یک از تکنیکهای دستگاهی دیگر ، بنا نهاده شده است. تاریخ پایه گذاری اصول اساسی آن به سال 1898 بر می‌گردد. در سال 1911 ، "تامسون" برای تشریح وجود نئون-22 در نمونه‌ای از نئون-20 از طیف جرمی استفاده نمود و ثابت کرد که عناصر می‌توانند ایزوتوپ داشته باشند. تا جایی که می‌دانیم، قدیمیترین طیف سنج جرمی در سال 1918 ساخته شد.

اما روش طیف سنجی جرمی تا همین اواخر که دستگاههای دقیق ارزانی در دسترس قرار گرفتند، هنوز مورد استفاده چندانی نداشت. این تکنیک با پیدایش دستگاههای تجاری که بسادگی تعمیر و نگهداری می‌شوند و با توجه به مناسب بودن قیمت آنها برای بیشتر آزمایشگاههای صنعتی و آموزشی و نیز بالا بودن قدرت تجزیه و تفکیک ، در مطالعه تعیین ساختمان ترکیبات از اهمیت بسیاری برخوردار گشته است.


اصول طیف سنجی جرمی


اصول طیف سنجی جرمی
به بیان ساده ، طیف سنج جرمی سه عمل اساسی را انجام می‌دهد:



مولکولها توسط جرایاناتی از الکترونهای پرانرژی بمباران شده و بعضی از مولکولها به یونهای مربوطه تبدیل می‌گردند. سپس یونها در یک میدان الکتریکی شتاب داده می‌شوند.


یونهای شتاب داده شده بسته به نسبت بار/جرم آنها در یک میدان مغناطیسی یا الکتریکی جدا می‌گردند.


یونهای دارای نسبت بار/جرم مشخص و معین توسط بخشی از دستگاه که در اثر برخورد یونها به آن ، قادر به شمارش آنها است، آشکار می‌گردند. نتایج داده شده خروجی توسط آشکار کننده بزرگ شده و به ثبات داده می‌شوند. علامت یا نقشی که از ثبات حاصل می‌گردد یک طیف جرمی است، نموداری از تعداد ذرات آشکار شده بر حسب تابعی از نسبت بار/جرم.
دستگاه طیف سنج جرمی
هنگامی که هر یک از عملیات را بدقت مورد بررسی قرار دهیم، خواهیم دید که طیف سنج جرمی واقعا پیچیده‌تر از آن چیزی است که در بالا شرح داده شد.

سیستم ورودی نمونه
قبل از تشکیل یونها باید راهی پیدا کرد تا بتوان جریانی از مولکولها را به محفظه یونیزاسیون که عمل یونیزه شدن در آن انجام می‌گیرد، روانه ساخت. یک سیستم ورودی نمونه برای ایجاد چنین جریانی از مولکولها بکار برده می‌شود. نمونه‌هایی که با طیف سنجی جرمی مورد مطالعه قرار می‌گیرند، می‌توانند به حالت گاز ، مایع یا جامد باشند. در این روش باید از وسایلی استفاده کرد تا مقدار کافی از نمونه را به حالت بخار در آورده ، سپس جریانی از مولکولها روانه محفظه یونیزاسیون شوند.

در مورد گازها ، ماده ، خود به حالت بخار وجود دارد. پس ، از سیستم ورودی ساده‌ای می‌توان استفاده کرد. این سیستم تحت خلاء بوده، بطوری که محفظه یونیزاسیون در فشاری پایینتر از سیستم ورودی نمونه قرار دارد.

روزنه مولکولی
نمونه به انبار بزرگتری رفته که از آن ، مولکولهای بخار به محفظه یونیزاسیون می‌روند. برای اطمینان از اینکه جریان یکنواختی از مولکولها به محفظه یونیزاسیون وارد می‌شود، قبل از ورود ، بخار از میان سوراخ کوچکی که "روزنه مولکولی" خوانده می‌شود، عبور می‌کند. همین سیستم برای مایعات و جامدات فرار نیز بکار برده می‌شود. برای مواد با فراریت کم ، می‌توان سیستم را به گونه‌ای طراحی کرد که در یک اجاق یا تنور قرار گیرد تا در اثر گرم کردن نمونه ، فشار بخار بیشتری حاصل گردد. باید مراقب بود که حرارت زیاد باعث تخریب ماده نگردد.

در مورد مواد جامد نسبتا غیر فرار ، روش مستقیمی را می‌توان بکار برد. نمونه در نوک میله‌ای قرار داده می‌شود و سپس از یک شیر خلاء ، وارد محفظه یونیزاسیون می‌گردد. نمونه در فاصله بسیار نزدیکی از پرتو یونیزه کننده الکترونها قرار می‌گیرد. سپس آن میله ، گرم شده و تولید بخاری از نمونه را کرده تا در مجاورت پرتو الکترونها بیرون رانده شوند. چنین سیستمی را می‌توان برای مطالعه نمونه‌ای از مولکولهایی که فشار بخار آنها در درجه حرارت اتاق کمتر از 9 - 10 میلیمتر جیوه است، بکار برد.

محفظه یونیزاسیون
هنگامی که جریان مولکولهای نمونه وارد محفظه یونیزاسیون گشت ، توسط پرتوی از الکترونهای پرانرژی بمباران می‌شود. در این فرآیند ، مولکولها به یونهای مربوطه تبدیل گشته و سپس در یک میدان الکتریکی شتاب داده می‌شوند. در محفظه یونیزاسیون پرتو الکترونهای پرانرژی از یک "سیم باریک" گرم شده ساطع می‌شوند. این سیم باریک تا چند هزار درجه سلسیوس گرم می‌شود. به هنگام کار در شرایطی معمولی ، الکترونها دارای انرژی معادل 70 میکرون - ولت هستند.

این الکترونهای پرانرژی با مولکولهایی که از سیستم نمونه وارد شده‌اند، برخورد کرده و با برداشتن الکترون از آن مولکولها ، آنها را یونیزه کرده و به یونهای مثبت تبدیل می‌کنند. یک "صفحه دافع" که پتانسیل الکتریکی مثبتی دارد، یونهای جدید را به طرف دسته‌ای از "صفحات شتاب دهنده" هدایت می‌کند. اختلاف پتانسیل زیادی (حدود 1 تا 10 کیلو ولت) از این صفحات شتاب دهنده عبور داده می‌شود که این عمل ، پرتوی از یونهای مثبت سریع را تولید می‌کند. این یونها توسط یک یا چند "شکاف متمرکز کننده" به طرف یک پرتو یکنواخت هدایت می‌شوند.

بسیاری از مولکولهای نمونه به هیچ وجه یونیزه نمی‌شوند. این مولکولها بطور مداوم توسط مکنده‌ها یا پمپهای خلا که به محفظه یونیزاسیون متصل نیستند، خارج می‌گردند. بعضی از این مولکولها از طریق جذب الکترون به یونهای منفی تبدیل می‌شوند. این یونهای منفی توسط صفحه دافع جذب می‌گردند. ممکن است که بخش کوچکی از یونهای تشکیل شده بیش از یک بار داشته باشند، (از دست دادن بیش از یک الکترون) اینها مانند یونهای مثبت تک ظرفیتی ، شتاب داده می‌شوند.

پتانسیل یونیزاسیون
انرژی لازم برای برداشتن یک الکترون از یک اتم یا مولکول ، پتانسیل یونیزاسیون آن است. بسیاری از ترکیبات آلی دارای پتانسیل یونیزاسیونی بین 8 تا 15 الکترون ولت هستند. اما اگر پرتو الکترونهایی که به مولکولها برخورد می‌کند، پتانسیلی معادل 50 تا 70 الکترون ولت نداشته باشد، قادر به ایجاد یونهای زیادی نخواهد بود. برای ایجاد یک طیف جرمی ، الکترونهایی با این میزان انرژی برای یونیزه کردن نمونه بکار برده می‌شوند.

تجزیه گر جرمی
پس از گذر کردن از محفظه یونیزاسیون ، پرتو یونها از درون یک ناحیه کوتاه فاقد میدان عبور می‌کند. سپس آن پرتو ، وارد "تجزیه گر جرمی" شده که در آنجا ، یونها بر حسب نسبت بار/جرم آنها جدا می‌شوند. انرژی جنبشی یک یون شتاب داده شده برابر است با:


که m جرم یون ، v سرعت یون ، e بار یون و V اختلاف پتانسیل صفحات شتاب دهنده یون است.


در حضور یک میدان مغناطیسی ، یک ذره باردار مسیر منحنی شکلی را خواهد داشت. معادله‌ای که شعاع این مسیر منحنی شکل را نشان می‌دهد به صورت زیر است:





که r شعاع انحنای مسیر و H قدرت میدان مغناطیسی است.


اگر این دو معادله را برای حذف عبارت سرعت ترکیب کنیم، خواهیم داشت:





این معادله مهمی است که رفتار و عمل یک یون را در بخش تجزیه‌گر جرمی یک طیف سنج جرمی توجیه می‌کند.


طیف سنج جرمی


تجزیه گر جرمی و قدرت تفکیک
از معادله فوق چنین بر می‌آید که هر قدر ، مقدار m/e بزرگتر باشد، شعاع انحنای مسیر نیز بزرگتر خواهد بود. لوله تجزیه‌گر دستگاه طوری ساخته شده است که دارای شعاع انحنای ثابتی است. ذره‌ای که نسبت m/e صحیحی داشته باشد، قادر خواهد بود تا طول لوله تجزیه‌گر منحنی شکل را طی کرده ، به آشکار کننده نمی‌رسند. مسلما اگر دستگاه ، یونهایی را که جرم بخصوصی دارند، نشان دهد. این روش چندان جالب نخواهد بود.

بنابراین بطور مداوم ، ولتاژ شتاب دهنده یا قدرت میدان مغناطیسی تغییر یافته تا بتوان کلیه یونهایی که در محفظه یونیزاسیون تولید گشته‌اند را آشکار ساخت. اثری که از آشکار کننده حاصل می‌گردد، بصورت طرحی است که تعداد یونها را بر حسب مقدار m/e آنها رسم می‌کند. فاکتور مهمی که باید در یک طیف سنج جرمی در نظر گرفتن قدرت تفکیک آن است. قدرت تفکیک بر طبق رابطه زیر تعریف می‌شود:




که R قدرت تفکیک ، M جرم ذره و M∆ اختلاف جرم بین یک ذره با جرم M و ذره بعدی با جرم بیشتر است که می‌تواند توسط دستگاه تفکیک گردد. دستگاههایی که قدرت تفکیک ضعیفی دارند، مقدار R آنها حداکثر 2000 در بعضی مواقع قدرت تفکیکی به میزان پنج تا ده برابر مقدار فوق مورد نیاز است.

آشکار کننده
آشکار کننده بسیاری از دستگاهها ، شامل یک شمارشگر است که جریان تولیدی آن متناسب با تعداد یونهایی است که به آن برخورد می‌کند. با استفاده از مدارهای الکترون افزاینده می‌توان آن قدر دقیق این جریان را اندازه گرفت که جریان حاصل از برخورد فقط یک یون به آشکار کننده اندازه ‌گیری شود.

ثبات آشکار کننده
سیگنال تولید شده از آشکار کننده به یک ثبات داده می‌شود که این ثبات خود طیف جرمی را ایجاد می‌نماید. در دستگاههای جدید ، خروجی آشکار کننده از طریق یک سطح مشترک به رایانه متصل است. رایانه قادر به ذخیره اطلاعات بوده و خروجی را به هر دو صورت جدولی و گرافیکی در می‌آورد. دست آخر داده‌ها با طیفهای استاندارد ذخیره شده موجود در رایانه مقایسه می‌گردد.

در دستگاهها قدیمیتر ، جریان الکترونی حاصل از آشکار کننده به یک سری از پنج گالوانومتر با حساسیتهای متفاوت داده می‌شود. پرتو نوری که به آینه‌های متصل به گالوانومترها برخورد می‌کند و به یک صفحه حساس به نور منعکس می‌گردد. بدین طریق یک طیف جرمی با پنج نقش بطور همزمان ، هر یک با حساسیتی متفاوت ایجاد می‌گردد. در حالی که هنوز دستگاه قویترین قله‌ها را در صفحه طیف نگاه می‌دارد، با استفاده از این پنج نقش ثبت ضعیفترین قله‌ها نیز ممکن می‌گردد.
موضوع مطلب: شیمی تجزیه کمی
(http://www.metallurgyis.ir/ftopic-quote-77.html)



دید کلی
شیمی تجزیه (Analytical chemistry) ، شامل جداسازی ، شناسایی و تعیین مقدار نسبی اجزای سازنده یک نمونه ‌از ماده ‌است. شیمی تجزیه کیفی ، هویت شیمیایی گونه‌ها را در نمونه آشکار می‌سازد. تجزیه کمی ، مقدار نسبی یک یا چند گونه یا آنالیت را به‌صورت عددی معلوم می‌دارد. پیش از انجام تجزیه کمی ‌، ابتدا لازم است اطلاعات کیفی بدست آید. معمولا تجزیه کیفی و کمی ‌شامل یک مرحله جداسازی نیز هستند.

نقش شیمی ‌تجزیه در علوم
شیمی تجزیه نقش حیاتی در توسعه علوم دارد. به عنوان مثال ، "ویلهلم اسوالد" (Wilhelm Ostwald) در سال 1894 نوشت:

««شیمی ‌تجزیه یا هنر تشخیص مواد مختلف و تعیین اجزای سازنده آن ، نقش اول را در کاربردهای مختلف علوم دارد؛ چرا که پاسخگوی سوالاتی است که در هنگام اجرای فرایندهای شیمیایی برای مقاصد علمی ‌و فنی مطرح می‌شود. اهمیت فوق‌العاده آن ، باعث شده ‌است که ‌از همان دوران نخستین تاریخ شیمی ‌، مجدانه شروع به رشد و توسعه کند و سوابق موجود شامل بخش قابل ملاحظه ای از کارهای کمی ‌است که تمامی‌ علوم را در بر می‌گیرد'.»»

از زمان اسوالد تاکنون ، شیمی‌ تجزیه ‌از یک هنر به یک علم در زمینه‌های مختلف صنعت ، طب و سایر علوم ، تحول و تکامل یافته ‌است. به‌عنوان مثال :



برای تعیین کارآیی وسایل کنترل دور ، لازم است مقدار هیدروکربنها ، اکسیدهای نیتروژن و منوکسید کربن موجود در گازهای اگزوز اتومبیل اندازه گیری شوند.


اندازه گیری کمّی‌ کلسیم یونیده در سرم خون ، ما را در تشخیص مرض پاراتیروئید در بیماران یاری می‌کند.


با اندازه گیری کمی نیتروژن در مواد غذایی ، میزان پروتئین موجود در آنها و در نتیجه ‌ارزش غذایی آنها معلوم می‌شود.


مقدار مرکاپتان موجود در گازهای مصرفی خانه‌ها بطور مستمر تحت کنترل قرار می‌گیرد تا از وجود مقدار معینی مرکاپتان برای ایجاد بوی نامطبوع که هشدار دهنده نشت گاز است، اطمینان حاصل کنند.


کشاورزان متجدد ، کود شیمیایی و آبیاری را به نحوی تنظیم می‌کنند که منطبق با نیاز گیاه در طی فصلهای رشد باشد. آنها این نیاز را از تجزیه کمی‌ گیاه و خاکی که گیاه در آن می‌روید، معلوم می‌کنند.


‌اندازه گیری‌های کمی ‌دارای نقش حیاتی در بسیاری از کارهای پژوهشی در زمینه‌های شیمی‌ ، زیست شناسی ، زیست شیمی ‌، زمین شناسی و سایر علوم است.



طبقه‌بندی روشهای تجزیه کمی
نتایج یک تجزیه کمی ‌را از دو اندازه گیری بدست می‌آوریم. یکی وزن یا حجم نمونه مورد اندازه گیری است و دوم ، اندازه گیری کمیتی است که با مقدار ماده مورد تجزیه در آن نمونه متناسب می‌باشد. معمولا در مرحله دوم ، تجزیه ، کامل می‌شود. شیمیدانان روشهای تجزیه را بر طبق طبیعت این اندازه گیری اخیر طبقه‌بندی می‌کنند. در یک روش وزنی ، جرم آنالیت یا جرم ماده‌ای که بطور شیمیایی به آن ارتباط دارد، تعیین می‌شود. در یک روش حجمی ‌، حجم محلولی که دارای مقدار کافی واکنشگر برای واکنش کامل با آنالیت است، اندازه گیری می‌شود.

روشهای الکتروشیمیایی شامل اندازه گیری خواصی نظیر پتانسیل ، جریان ، مقاومت و مقدار الکتریسیته است. روشهای طیف‌بینی بر مبنای اندازه گیری برهمکنش بین تابش الکترومغناطیسی و اتمها یا مولکولهای آنالیت (اثر تابش بر ماده) و یا تولید چنین تابشی توسط آنالیت استوارند.

بالاخره ، باید به چند روش متفرقه نیز اشاره کرد. این روشها شامل اندازه گیری خواصی چون نسبت جرم به بار ( طیف سنجی جرمی‌ ) ، سرعت واپاشی پرتوزایی ، گرمای واکنش ، رسانندگی گرمایی ، فعالیت نوری و ضریب شکست است.



مراحل تجزیه کمی ‌نوعی




انتخاب روش تجزیه
اولین مرحله حیاتی در هر تجزیه کمی ‌، انتخاب روش است. انتخاب گاهی دشوار است و به تجربه و بصیرت شیمیدان بستگی دارد. از عوامل مهم در انتخاب روش ، میزان صحت مورد انتظار است. متاسفانه برای دستیابی به نتایج بسیار مطمئن ، همواره لازم است که وقت زیادی نیز صرف شود. معمولا ، روش را بر اساس مصالحه بین میزان صحت و جنبه‌های اقتصادی انتخاب می‌کنند.

دومین عاملی که در ارتباط با جنبه‌های اقتصادی در نظر گرفته می‌شود، تعداد نمونه‌های مورد تجزیه ‌است. اگر تعداد نمونه‌ها زیاد باشد، در آن صورت می‌توان وقت زیادی را صرف عملیات مقدماتی نظیر نصب و درجه‌بندی دستگاه‌ها و وسایل و همچنین تهیه محلولهای استاندارد کرد، اما اگر فقط یک نمونه یا نهایتا تعداد کمی ‌نمونه داشته باشیم، شاید صلاح در انتخاب روشی باشد که مراحل مقدماتی را یا نداشته و یا حداقل ممکن را داشته باشد.

نمونه برداری
برای دستیابی به ‌اطلاعات ارزشمند ، لازم است تجزیه بر روی نمونه ای انجام شود که ترکیب آن ، کاملا معرف تمامی ‌ماده‌ای که نمونه ‌از آن انتخاب شده ‌است، باشد. هنگامی‌ که ماده بزرگ و ناهمگن است، برای انتخاب نمونه نماینده باید سعی و دقت بسیار معطوف شود. نمونه برداری چه ساده باشد، چه پیچیده ، شیمیدان قبل از آغاز عملیات تجزیه باید از اینکه نمونه آزمایشگاهی نماینده کل محموله ‌است، اطمینان یابد.

تهیه نمونه آزمایشگاهی
یک نمونه جامد آزمایشگاهی را آسیاب می‌کنند تا اندازه ذرات آن کاهش یابد، سپس مخلوط می‌کنند تا همگن شود و قبل از انجام تجزیه بر روی آن ، برای مدت زمانهای مختلف نگهداری می‌کنند. در هر یک از این مراحل ، برحسب میزان رطوبت محیط ، ممکن است جذب یا دفع سطحی آب اتفاق افتد. چون ممکن است جذب یا دفع آب باعث تغییرات شیمیایی در نمونه شود، لذا بهتر است نمونه‌ها را درست قبل از انجام تجزیه ، خشک کنیم. روش دیگر آنکه ، رطوبت نمونه را همزمان با انجام تجزیه بر روی نمونه ، طبق یک روش جداگانه ، اندازه گیری کنیم.

استفاده ‌از نمونه‌های همتا
اکثر تجزیه‌های شیمیایی بر روی نمونه‌های همتا که وزن یا حجم آنها با دقت توسط ترازوی تجزیه و یا یک وسیله حجمی ‌دقیق تعیین شده ‌است، انجام می‌شود. همتاسازی موجب ارتقای کیفیت نتایج و همچنین معیاری برای قابلیت اطمینان آنها خواهد بود.

تهیه محلولهای نمونه
بیشتر تجزیه‌ها بر روی محلول حاصل از نمونه‌ها انجام می‌شود. در حالت ایده‌آل ، حلال باید تمامی ‌نمونه (نه فقط آنالیت) را به‌سرعت و بطور کامل حل کند. شرایط انحلال باید در حد امکان ملایم باشد تا مانع از اتلاف آنالیت شود. متاسفانه بسیاری از مواد مورد تجزیه در حلالهای معمولی نامحلولند. مواد سیلیکاتی ، بسپارهای با جرم زیاد یا نسوج حیوانی از این قبیل هستند. در چنین مواردی تبدیل آنالیت به حالت محلول می‌تواند یک امر دشوار و وقت‌گیر باشد.



حذف تداخل کننده‌ها
تعداد کمی ‌از خواص شیمیایی و فیزیکی مهم در تجزیه‌های شیمیایی به گونه شیمیایی خاصی منحصر است. در عوض ، واکنشهایی که بکار می‌رود و خواصی که ‌اندازه گیری می‌شود، شامل ویژگی گروهی از عناصر و ترکیبات است. گونه‌های غیر از آنالیت را که بر اندازه گیری نهایی موثرند، «تداخل کننده» می‌نامند. تدابیری باید اندیشید تا قبل از اندازه گیری نهایی ، آنالیت از تداخل کننده‌ها جدا شود. هیچ قاعده و قانون قطعی برای حذف تداخل کننده‌ها نمی‌توان ذکر کرد که حل این مساله ، دشوارترین مرحله یک تجزیه ‌است.

درجه‌بندی و اندازه گیری
تمامی ‌نتایج حاصل از تجزیه به ‌اندازه گیری نهایی X که یک خاصیت فیزیکی آنالیت است، بستگی دارد. این خاصیت باید به صورت معین و تکرارپذیر با تغییر غلظت آنالیت CA تغییر کند. در حالت ایده‌آل ، خاصیت فیزیکی اندازه گیری شده ، مستقیما با غلظت متناسب است. یعنی :


CA=kX

که در آن k ثابت تناسب است. برای روشهای تجزیه ، باید مقدار k به صورت تجربی و با CA معلوم تعیین شود. فرایند تعیین مقدار k مرحله مهمی ‌است و به نام درجه‌بندی موسوم است.

محاسبه نتایج
معمولا ، محاسبه غلظت آنالیت با استفاده ‌از داده‌های تجربی ، بویژه با ماشینهای محاسبه و کامپیوتر مدرن ، یک امر ساده و سرراست است. چنین محاسباتی بر مبنای داده‌های خام که در مرحله ‌اندازه گیری بدست آمده‌اند و همچنین استوکیومتری واکنش شیمیایی که تجزیه بر اساس آن انجام یافته ‌است و بالاخره عوامل دستگاه ، ‌استوار است.

ارزیابی نتایج و برآورد میزان اطمینان آنها
نتایج تجزیه بدون برآورد میزان اطمینان آنها کامل نیست. شخص آزمایش کننده ، برای آنکه داده‌ها ارزشمند باشند، لازم است میزان عدم قطعیت نتایج محاسبه شده را معلوم کند (محاسبه خطا).

استفاده از تمامی مطالب سایت تنها با ذکر منبع آن به نام سایت علمی نخبگان جوان و ذکر آدرس سایت مجاز است

استفاده از نام و برند نخبگان جوان به هر نحو توسط سایر سایت ها ممنوع بوده و پیگرد قانونی دارد