PDA

توجه ! این یک نسخه آرشیو شده میباشد و در این حالت شما عکسی را مشاهده نمیکنید برای مشاهده کامل متن و عکسها بر روی لینک مقابل کلیک کنید : سيستم تزريق الکترونيکي



ریپورتر
14th November 2009, 03:53 PM
مقدمه :
سيستم هاي سوخت رساني بکار گرفته شده در اتومبيلها در طي ساليان دراز تغييرات زيادي کرده است . سوبارو 1990 آخرين اتومبيلي در ايالات متحده بود که از کاربوراتور استفاده مي کرد . امروزه تمام اتومبيلهايي که در ايالات متحده بفروش مي رسند از سيستم انژکتوري استفاده مي کنند .
اما در اروپا از حدود دهه 1980 ميلادي سيستم انژکتوري مورد استفاده قرار مي گرفته است .
سيستم انژکتوري در حدود دهه 1950 بعنوان سيستم جديد سوخت رساني مورد توجه بوده است .

سقوط کاربوراتور :
در گذشته کاربوراتور تنها وسيله اي بود که سوخت موتور هاي احتراق داخلي را تامين مي کرد . کاربوراتور هنوز در ابزارهايي مانند ماشينهاي چمن زني و اره هاي قطع درختان مورد استفاده قرار مي گيرد .
اما با پيشرفت صنايع اتومبيل ، کاربوراتور بسيار پيچيده شد ، تا بتواند تمام نيازهاي يک اتومبيل مدرن را پوشش دهد .از طرفي قوانين سخت گير حفاظت از محيط زيست ، اتومبيل سازان را مجبور مي ساخت که از کاتاليست کنورتر استفاده کنند . براي اينکه کاتاليست کنورتر موثر باشد ، بايد نسبت هوا به سوخت بدقت کنترل شود . کاربوراتورها نمي توانستند اين کنترل دقيق را اعمال کنند .
در ابتدا کاربوراتور ها با سيستم پاشش تک نقطه اي جايگزين شدند . اما با پيشرفت موتور ها اين سيستم نيز با سيستم پاشش چند نقطه اي يا سيستم پاشش متوالي جايگزين شد . اين سيستم براي هر سيلندر يک انژکتور در نظر گرفته بود که معمولا درست بالاي سوپاپ ورودي قرار مي گرفت . اين سيستم ، کنترل دقيقتر سوخت و پاسخ سريعتر به شرايط مختلف را به ارمغان می آورد .

وقتی پدال گاز را فشار می دهیم چه اتفاقی می افتد ؟ :
پدال گاز در اتومبیل به دریچه گاز متصل شده است . این دریچه تعیین می کند که چه مقدار هوا وارد موتور شود . پس پدال گاز در واقع پدال هواست . وقتی پدال گاز را می فشریم دریچه گاز باز میشود و هوای بیشتری وارد موتور می شود . Ecm بوسیله سنسورهای خود متوجه باز شدن دریچه گاز می شود و متناسب با مقدار هوای ورودی ، مقدار بیشتری سوخت در اختیار موتور قرار می دهد.

سیستم سوخت رسانی انژکتوری :
بطور خلاصه هدف استفاده از سیستم سوخت رسانی انژکتوری تزریق مقدار معینی سوخت در زمان مناسب است . تعیین این مقدار و زمان مناسب بر عهده برنامه های ecm است که این عمل را بر پایه اطلاعات ورودی از سنسورها انجام می دهد .
وظیفه این سیستم این است که حجم دقیقی از سوخت را با فشاری معین به هر سیلندر تحویل دهد . همچنین این سیستم باید مطابق با استانداردها و آیین نامه های سلامتی و حفاظت از محیط زیست باشد.

سیستم سوخت رسانی با بازگشت :
وقتی که پمپ بوسیله ecm بکار افتد ، سوخت تحت فشار از باک به سمت فیلتر و ریل سوخت و رگلاتور فشار به جریان می افتد . رگلاتور فشار ، فشار سوخت را در ریل سوخت بر مقدار معینی تثبیت می کند . سوخت اضافی که بوسیله موتور مصرف نشده بوسیله یک لوله بازگشت به باک بر میگردد. یک دمپر نوسان کننده که روی ریل سوخت نصب شده ، تغییرات فشار سوخت را گرفته و فشار را یکنواخت می کند . انژکتورها وقتی بوسیله ecm روشن شوند ، سوخت را به منیفولد ورودی ( گاز ) می رسانند . وقتی پمپ خاموش شود ، یک سوپاپ یکطرفه در پمپ بسته می شود و فشار را در سیستم سوخت رسانی حفظ می کند .

سیستم سوخت رسانی بی بازگشت :
در این روش وقتی پمپ بوسیله ecm بکار می افتد ، سوخت از پمپ به رگلاتور فشار می رسد . در رگلاتور فشار ، سوخت اضافی به باک بر می گردد و سوخت تحت فشار به خارج از باک ارسال می شود ، از فیلتر و دمپر می گذرد و به ریل سوخت می رسد . و وقتی انژکتورها روشن شدند سوخت به منیفولد پاشیده می شود .
در این سیستم ، فشار سوخت بیشتر از سیستم با بازگشت است ( در حدود 50-44 psi و 347-301 کیلو پاسکال ) و نیز فشار در آن ثبات بیشتری دارد .
سیستم سوخت رسانی بی بازگشت امروزه محبوبیت بیشتری دارد . زیرا سوختی که توسط موتور گرم شده است به باک بر نمی گردد و به همین دلیل تبخیر سوخت کمتری در آن رخ می دهد . در حالی که در سیستم سوخت رسانی با بازگشت ، سوخت گرم شده توسط موتور به باک بر می گردد و سوخت گرمتر یعنی تبخیر بیشتر .

قسمتهای عمده سیستم سوخت رسانی انژکتوری عبارتند از :

- پمپ سوخت
ecm -
- رگلاتور فشار
- مدار کنترل فشار سوخت
- لوله های اتصال
- باک
- فیلتر
- دمپر نوسان گیر
- انژکتورها
- سویچ اینرسی

پمپ سوخت :
پمپ سوخت در اغلب اتومبیلها داخل باک بنزین نصب می شود و در سوخت غوطه ور است و سوخت ، پمپ را خنک نگه می دارد و آنرا روان کاری می کند . وقتی موتور روشن می شود و جریان برق به پمپ می رسد ، آرماتور و ایمپلر می چرخند . ایمپلر سوخت را از طریق فیلتر می کشد و سوخت تحت فشار را از خروجی پمپ به بیرون می فرستد .
توان خروجی پمپ طوری طراحی شده تا نیاز موتور را برطرف کرده و وجود مقدار کافی سوخت را در همه حال بیمه کند .
یک سوپاپ یکطرفه بر روی درگاه خروجی پمپ قرار داده شده تا زمانی که موتور خاموش است ، سوخت داخل سیستم همچنان تحت فشار باقی بماند . این کار عمل استارت زدن را بهبود می بخشد و از قفل گازی جلوگیری می کند . بدون وجود این سوپاپ هر بار که موتور استارت زده می شود ، سوخت باید دوباره تحت فشار قرار گیرد و این کار ، زمان استارت زدن را زیاد می کند .
همچنین وقتی یک موتور گرم خاموش می شود ، دمای سوخت درون لوله های اطراف موتور زیاد می شود و وقتی سوخت تحت فشار باشد دمای جوش آن بالا رفته و از تبخیر آن جلوگیری می شود .
وقتی سیستم سوخت رسانی تحت فشار باشد یک سوپاپ اطمینان عمل کرده و از آسیب رسیدن به پمپ جلوگیری می کند .
در بسیاری از مدلها ، پمپ داخل یک مجموعه متشکل از فیلتر ، قسمت فشار ، قسمت ارسال و پمپ قرار گرفته که هر کدام به تنهایی می توانند از مجموعه جدا شده و مورد تعمیر یا سرویس قرار گیرند.


جت پمپ :
جت پمپ یک پمپ اضافی است و موقعی مورد استفاده قرار می گیرد که کف باک بنزین دو قسمتی باشد . بنزین اضافی هنگام بازگشت به باک از یک ونتوری می گذرد و یک ناحیه کم فشار اطراف ونتوری ایجاد می کند . این عمل باعث می شود که سوخت از قسمت b کشیده شده به قسمت a برود .


کنترل پمپ سوخت :
طی سالها مدارات مختلفی برای کنترل پمپ مورد استفاده قرار گرفته اند . که عبارتند از :
- کنترل روشن – خاموش بوسیله ecm
- کنترل روشن – خاموش بوسیله سویچ پمپ
- کنترل روشن – خاموش دو سرعته بوسیله یک مقاومت
- کنترل روشن – خاموش دو سرعته بوسیله ecm
- کنترل روشن – خاموش سه سرعته بوسیله ecm

بهترین راه تشخیص نوع مدار کنترل پمپ اینست که به evvd آن نگاه کنیم . ( که متاسفانه نویسنده توضیح نداده که evvd چیست . )
اگر نیاز بود دیاگرامها رو آپلود می کنم .


سویچ اینرسی و نحوه عملکرد آن :
سویچ اینرسی پمپ زمانی که اتومبیل تصادف می کند وارد عمل شده و با خاموش کردن پمپ از نشت سوخت به بیرون جلوگیری می کند .
سویچ اینرسی تشکیل شده است از یک توپی ، یک میله اتصال همراه فنر ، کنتاکت و سویچ بازگشت به حالت اولیه ( ریست ) .
اگر نیروی حاصل از تصادف به مقداری که از قبل تعیین شده برسد ، توپی حرکت کرده باعث می شود که میله اتصال پایین بیاید و کنتاکت را جدا کند . این عمل باعث می شود که مدار بین ecm و قسمت کنترل پمپ باز شده و پمپ خاموش شود .
اگر سویچ اینرسی پمپ عمل کرده و توپی از جای خود حرکت کند ، براحتی می توان آنرا با حداقل 1 ثانیه نگه داشتن سویچ ریست به حالت اولیه برگرداند .

رگلاتورهای فشار :
رگلاتورهای فشار باید بدقت فشار سوخت را در حد تعیین شده نگه دارند . اهمیت این موضوع به این دلیل است که ecm فشار سوخت را اندازه گیری نمی کند و آنرا همیشه در حد تعیین شده می پندارد. دو نوع رگلاتور وجود دارد ، تلفیقی و ثابت :

رگلاتورهای فشار تلفیقی :
سیستم سوخت رسانی با بازگشت از یک رگلاتور فشار استفاده می کند که بین ریل سوخت و لوله بازگشت به باک قرار گرفته است و به رگلاتور تلفیقی معروف شده است . در این سیستم دو نوع رگلاتور فشار مورد استفاده قرار گرفته است . یکی بوسیله خلاء و دیگری بوسیله فشار اتمسفر کار می کند .
الف – رگلاتورهای تلفیقی خلائی :
در این نوع ، فشار در ریل سوخت با فشار در منیفولد رابطه مستقیم دارد . فشار کم منیفولد ورودی ( مانند زمانی که موتور خلاص کار می کند ) ، دیافراگم را کشیده و فشار فنر را کاهش می دهد . این عمل به مقدار بیشتری از سوخت اجازه بازگشت به باک می دهد و فشار در ریل سوخت کاهش می یابد . باز شدن دریچه گاز ، فشار داخل منیفولد را افزایش می دهد . در این حالت خلاء بر روی دیافراگم کاهش یافته و در نتیجه فشار فنر افزایش می یابد و از بازگشت سوخت به باک جلوگیری کرده و فشار داخل ریل سوخت افزایش می یابد .


ب – رگلاتورهای تلفیقی اتمسفری :
رگلاتورهای تلفیقی اتمسفری ، فشار سوخت را بر اساس تغییرات فشار جو تعریف ( تعیین ) می کنند. در این مدل یک لوله از رگلاتور به مجرای ورودی هوا بین فیلتر هوا و دریچه گاز متصل است .
فشار فنر پشت دیافراگم و فشار هوا ، فشار سوخت را روی مقدار ثابتی نگه می دارد ( 265-226 کیلو پاسکال یا 44- 38 psi ) .
وقتی فشار هوا تغییر می کند ( مانند زمانی که از جای کم ارتفاع به مکانی مرتفع می رویم ) فشار پشت دیافراگم کاهش یافته و در نتیجه فشار در ریل سوخت نیز کاهش می یابد .

رگلاتورهای فشار ثابت :
سیستم سوخت رسانی بی بازگشت از یک رگلاتور فشار ثابت استفاده می کند که بالای پمپ و درون باک قرار گرفته است .
این نوع از رگلاتور فشار سوخت را صرف نظر از فشار منیفولد ورودی در حد ثابتی نگه می دارد . ( عملکرد آن وابسته به فشار منیفولد نیست ) .
فشار سوخت در این نوع بوسیله فنر داخل رگلاتور تعیین می شود . سوختی که از پمپ می آید بر فشار فنر رگلاتور غلبه کرده و مقداری از آن به باک برگشت داده می شود . در این نوع ، فشار سوخت قابل تنظیم نیست .

کنترل فشار سوخت دمای بالا :
بعضی مو تورها به یک سیستم کنترل فشار سوخت دمای بالا مجهز شده اند که از ایجاد قفل گازی جلوگیری کرده و استارت زدن و کارکرد موتور را بهبود می بخشد .
در این سیستم یک 3 راهه vsv به مجرای خلاء رگلاتور متصل است . در حالت عادی vsv خاموش بوده و خلاء منیفولد تعیین کننده عملکرد رگلاتور است . زمانی که موتور گرم شد و دمای مایع خنک کننده به بالای 85 درجه سانتیگراد و دمای هوای ورودی به بالای مقدار تعیین شده رسید ، vsv بوسیله ecm روشن می شود . مجرای خلاء منیفولد بسته شده و فشار جو بر دیافراگم رگلاتور وارد می شود .این عمل باعث بالا رفتن فشار سوخت شده و از قفل گازی جلوگیری می شود. در این حالت اگر موتور خاموش شده و دوباره روشن شود ( بوسیله راننده ) ، vsv برای حدود 120 ثانیه روشن می ماند .

خطوط انتقال سوخت و اتصالات :
اتومبیل های امروزی از اجزاء و اتصالات مختلفی برای انتقال سوخت استفاده می کنند . بر حسب مدل اتومبیل و مکان و شرایط قرارگیری قطعه از فولاد یا مواد مرکب استفاده می شود . این مسئله خیلی مهم است که هنگام سرویس خطوط انتقال از دستور العمل تعیین شده پیروی شود .


باک سوخت :
باک سوخت طوری طراحی شده تا سوخت و بخارات آن را با ایمنی تمام نگه دارد . باک بطور معمول مجموعه پمپ و سوپاپهای حفاظتی را نیز در بر می گیرد .

فیلترها :
به طور معمول دو فیلتر در سیستم سوخت رسانی وجود دارد . اولی بر روی درگاه مکش پمپ قرار گرفته و از آسیب رسیدن پمپ توسط آشغالها و مواد زائد موجود در بنزین جلوگیری می کند . دومی بین پمپ و ریل سوخت قرار گرفته و آشغالها و آلودگیها را از رسیدن به انژکتورها باز می دارد . این فیلتر ذرات بسیار ریز را از بنزین می گیرد . زیرا انژکتورها به سوخت تمیز نیاز دارند و در غیر این صورت آسیب می بینند . فیلتر ممکن است بعنوان قسمتی از مجموعه پمپ داخل باک یا خارج از باک در خطوط انتقال منتهی به ریل سوخت قرار گیرد . فیلتر طوری طراحی شده که نیاز به تعمیرات و نگهداری نداشته باشد .
یک فیلتر معیوب از رسیدن سوخت به انژکتورها جلوگیری می کند و موتور ممکن است خوب استارت زده نشود ، ریپ بزند و یا قدرتش کاهش یابد . و یک فیلتر کاملا مسدود شده حتی از روشن شدن موتور جلوگیری می کند .

دمپر نوسان گیر :
باز و بسته شدن سریع انژکتورها باعث نوسان فشار در ریل سوخت می شود . در نتیجه مقدار سوخت پاشیده شده ممکن است بیشتر یا کمتر از مقدار مطلوب باشد . دمپر نوسان گیر که بر روی ریل سوخت نصب شده ، این نوسانات را کاهش می دهد .
زمانی که فشار ناگهان رو به افزایش می رود ، دیافراگم متصل به فنر اندکی به داخل فرو رفته و حجم ریل سوخت را افزایش می دهد . این عمل باعث جلوگیری کوتاه مدت از بالا رفتن بیش از حد فشار می شود .
زمانی که فشار ناگهان کاهش می یابد ، دیافراگم منبسط شده و حجم ریل سوخت را کاهش می دهد که این عمل نیز باعث جلوگیری کوتاه مدت از افت فشار سوخت می شود .
برخی از موتور ها به این دمپر نیاز دارند و برخی دیگر نیاز ندارند .
پیچ بالای دمپر راه آسانی را برای تست فشار سیستم سوخت رسانی فراهم می کند . زمانی که پیچ بالاست این نکته را می رساند که فشار داخل سیستم بیشتر از حد نیاز است . در بیشتر مواقع این تست درست عمل می کند . این پیچ قابل تنظیم نیست و برای کالیبراسیون دمپر در کارخانه مورد استفاده قرار می گیرد .

انژکتور و نحوه کار آن :
انژکتور چیزی جز یک شیر برقی نیست که می تواند در هر ثانیه بارها باز و بسته شود . انژکتور وقتی بوسیله ecm روشن شود ، سوخت را اتمیزه کرده و بداخل منیفولد گاز هدایت می کند . برای هر سیلندر یک انژکتور وجود دارد که در منیفولد گاز قبل از سوپاپ ورودی نصب شده است . عایق و درز گیری که بین انژکتور و بدنه منیفولد قرار گرفته ، از نفوذ هوا بداخل منیفولد و سرایت حرارت به انژکتور جلوگیری می کند . لوله سوخت رسان ، انژکتور را محفوظ می دارد و اورینگی که بین انژکتور و لوله سوخت رسان قرار گرفته از نشت سوخت ممانعت می کند .
موتور های مختلف به انژکتور های مختلفی نیاز دارند . انژکتورها طوری طراحی شده اند تا مقدار معینی سوخت را از خود عبور دهند . بعلاوه تعداد سوراخهای نوک انژکتور متناسب با نوع کاربری موتور و مدل آن تغییر می کند .
زمانی که یک انژکتور را تعویض می کنیم ، ضروری است که انژکتور مورد نیاز همان موتور را استفاده کنیم .
داخل انژکتور یک سلونوئید و یک سوپاپ سوزنی شکل قرار گرفته است . مدار انژکتور یک مدار اتصال بدنه است . برای روشن کردن انژکتور ، ecm یک ترانزیستور را روشن کرده که اتصال بدنه را کامل می کند . میدان مغناطیسی حاصل از سلونوئید بر فشار فنر غلبه کرده سوزن را بالا می کشد و سوخت از انژکتور پاشیده می شود . وقتی ecm مدار را خاموش کند ، میدان مغناطیسی از بین رفته و فنر ، سوزن را به پایین فشار می دهد . سوزن در جای خود نشسته و راه عبور سوخت را می بندد .

ریپورتر
14th November 2009, 03:55 PM
زمان بندي عملکرد انژکتورها و مدارات کنترل :
طراحي انژکتورها و مدارات کنترل آن و همچنين برنامه ريزي ECM تعيين مي کند که هر انژکتور چه زماني سوخت را به هر سيلندر تحويل دهد .
اگر انژکتور بر اساس مکان زاويه اي ميل لنگ عمل کند ، به آن پاشش سنکرونيزه گويند . بنابر کاربردهاي مختلف موتور ها ، سه روش اصلي پاشش عبارتند از :
- همزمان
- گروهي
- متوالي
در تمام اين روشها ، ولتاژ بوسيله سويچ احتراق يا رله اصلي EFI تامين مي شود . و ECM با فعال کردن ترانزيستور اتصال بدنه ( منفي ) ، مدار کنترل را کامل کرده و به اين ترتيب انژکتورها را کنترل مي کند .
روشهاي همزمان و گروهي امروزه منسوخ شده اند و ديگر از آنها استفاده نمي شود .
در روش همزمان تمام انژکتورها همزمان با هم تحريک شده و همگي بوسيله يک مدار کنترل واحد کنترل مي شوند . در اين روش ، پاشش يکبار در هر چرخه موتور اتفاق مي افتد .
در روش گروهي ، انژکتورها در چند گروه ، گروهبندي شده اند . يک ترانزيستور اتصال بدنه براي هر گروه بطور مجزا تعبيه شده است .
در روش متوالي ، هر انژکتور بطور مجزا کنترل مي شود . و طوري زمان بندي شده اند که پاشش درست قبل از باز شدن سوپاپ ورودي انجام شود .
مزيت سيستم متوالي بر ديگر سيستم ها اينست که وقتي که راننده تغييري در شرايط رانندگي مي دهد ، سيستم متوالي مي تواند بسرعت پاسخ دهد . و تنها بايد تا باز شدن سوپاپ بعدي صبر کرد . اما در سيستم همزمان ، بايد صبر کرد تا موتور يک دور کامل بزند تا زمان پاشش فرا برسد .
در شرايط خاصي مثل زمان استارت و شتاب گيري ، ECM بدون توجه به مکان ميل لنگ سوخت بيشتري تزريق مي کند . که اين عمل ، پاشش غير سنکرونيزه ناميده مي شود .

کنترل حجم پاشش سوخت :
مقدار سوخت پاشيده شده بستگي به فشار داخل سيستم سوخت رساني و مدت زمان عملکرد انژکتور دارد . فشار داخل سيستم سوخت رساني بوسيله رگلاتور فشار کنترل مي شود و کنترل مدت زمان عملکرد انژکتورها بر عهده ECM است . مدت زمان عملکرد انژکتورها که گاهي طول نبض هم ناميده شده است ، با واحد میلی ثانیه ( ms ) اندازه گیری می شود .
استارت زدن موتور سرد معمولا نیاز به بیشترین طول نبض دارد . طول نبض اصولا تابعی است از بار موتور و دمای مایع خنک کننده . هر چقدر بار موتور بیشتر بوده و دریچه گاز بیشتر باز باشد ، طول نبض افزایش می یابد .
ECM طول نبض را بر پایه سیگنالهای دریافتی از سنسورها ، شرایط موتور و برنامه های خودش تنظیم می کند.

کنترل پاشش زمان استارت :
زمانی که سویچ در وضعیت استارت قرار می گیرد ، ECM ولتاژی از طریق ترمینال STA خود دریافت کرده و بر اساس دمای مایع خنک کننده ، طول نبض پایه را تعریف می کند .سپس بر اساس سیگنالهای دریافتی از سنسور دمای هوای ورودی منیفولد ، طول نبض را تنظیم می کند . ( در اتومبیلهایی که به MAP سنسور مجهزند ) .
ولتاژ باتری هم در تعیین طول نبض نقش دارد . زمانی که ولتاژ باتری پایین است ، انژکتورها آهسته تر عمل می کنند ( سوزن آهسته تر بالا می آید ) و طول نبض کاهش می یابد . ECM این مسئله را با افزودن طول نبض بطور خودکار حل می کند .
وقتی ECM سیگنال NE را از سنسور مکان میل لنگ دریافت می کند ، همه انژکتورها همزمان روشن می شوند . این عمل ، وجود مقدار کافی سوخت برای استارت زدن را تضمین می کند .
در درجه دمای زیر صفر ، طول نبض بشدت افزایش پیدا می کند تا بر مشکل تبخیر نا مناسب سوخت فائق آید .

کنترل پاشش سوخت زمان حرکت :
مدت زمان کل پاشش سوخت در سه مرحله تعیین می شود :

1- تعیین طول نبض پایه :
در اتومبیلهایی که در آنها از MAP سنسور استفاده شده است ، ECM حجم هوا را بوسیله اطلاعات دریافتی از MAP سنسور ، سنسور دمای هوای ورودی و مقادیر ذخیره شده در ECM تعیین می کند .

2- تصحیحات طول نبض بر اساس اطلاعات دریافتی از سنسورهای مختلف :
ECM طول نبض را بر اساس اطلاعات متنوع ورودی تصحیح می کند تا مقدار پاشش همیشه با شرایط مختلف متناسب باشد.

غنی سازی پس از استارت :
پس از استارت ، ECM مقداری سوخت اضافی برای مدت زمان مشخصی به موتور تزریق می کند تا عملکرد موتور را ثبات بخشد . این سوخت اضافی ، زمان استارت بیشترین مقدار را دارد و با گذشت زمان و گرم شدن موتور ، بتدریج کاهش می یابد . مقدار این سوخت اضافی رابطه عکس با دمای خنک کننده موتور دارد و زمانی که این دما به حدود 80-50 درجه سانتیگراد رسید ، قطع می شود .

تصحیحات بر اساس اطلاعات دریافتی از سنسور دمای هوای ورودی :
با افزایش دمای هوا ، چگالی هوای ورودی کاهش می یابد . ECM بر اساس اطلاعات دریافتی از سنسور دمای هوای ورودی ، با تغییر در مدت زمان پاشش ، این تغییرات چگالی را جبران می کند. ECM طوری برنامه ریزی شده است که در دمای 20 درجه سانتیگراد تغییری اعمال نمی کند. زیر 20 درجه طول نبض را افزایش و بالای 20 درجه سانتیگراد ، طول نبض را کاهش می دهد . ( با افزایش چگالی هوای ورودی ، مقدار سوخت را افزایش می دهد و بالعکس ) .

غنی سازی هنگام افزایش بار موتور :
وقتی ECM تشخیص دهد که بار موتور افزایش یافته ، طول نبض را افزایش می دهد . مقدار سوخت اضافه شده بستگی دارد به اطلاعات رسیده از MAP یا MAF سنسور ، سنسور موقعیت دریچه گاز و سنسور دور موتور .
هنگامی که بار موتور ( و دمای هوای ورودی ) افزایش پیدا می کند ، طول نبض افزایش می یابد . و هنگامی که دور موتور زیاد می شود ، فرکانس پاشش هم به همان نسبت افزایش می یابد .

تنظیمات هنگام شتاب گیری :
هنگام شتاب گیری ، ECM طول نبض را افزایش می دهد و سوخت را غنی می کند تا از ریپ زدن و تعلل موتور جلوگیری شود . این افزایش طول نبض ، به مقدار تغییر وضعیت دریچه گاز و بار موتور بستگی دارد . هر چقدر دریچه گاز بیشتر باز شود و بار موتور بیشتر باشد ، افزایش طول نبض بیشتر خواهد بود .

قطع سوخت هنگام کاهش سرعت :
زمانی که دریچه گاز کاملا بسته است و موتور در حال کاهش سرعت است ، لزومی به پاشش سوخت نیست . در این حالت ، ECM برای کاهش مصرف سوخت و نیز کاهش آلودگی ، انژکتورها را تحت شرایط خاصی باز نمی کند و پس از مدتی و رسیدن به دور موتور مشخصی ، پاشش از سر گرفته می شود .
همانطور که در شکل مشخص است ، سرعتهایی که در آنها سوخت قطع و دوباره وصل می شود متغییراند و بستگی به دمای مایع خنک کننده ، سیگنال STA و وضعیت کلاچ A/C دارند. ضرورتا وقتی بار موتور زیاد باشد ، ECM پاشش دوباره سوخت را زودتر شروع می کند .
هنگامی که دریچه گاز کاملا بسته و اتومبیل در حال کاهش سرعت باشد ، سوخت قطع شده و در این حال اکسیژن زیادی به کاتالیست وارد می شود . برای جلوگیری از این عمل ، در برخی از موتور ها سیستمی بکار گرفته شده که هنگام کاهش شدید سرعت ، مقدار کمی سوخت بوسیله انژکتورها پاشیده شده و سوخت رسانی بکل قطع نمی شود .


قطع سوخت به هنگام افزایش بیش از حد دور موتور :
برای جلوگیری از آسیب رسیدن به موتور ، یک برنامه محدود کننده دور موتور داخل ECM برنامه ریزی شده تا هنگامی که دور موتور از یک حد مشخص فراتر رفت ، انژکتورها خاموش شده و دور موتور کاهش یابد . به محض اینکه دور موتور از حد تعیین شده پایینتر آمد ، انژکتورها پاشش سوخت را از سر می گیرند . بطور معمول آستانه فعال شدن این برنامه، بالاتر از خط قرمز مشخص شده بر روی دورسنج موتور است .

قطع سوخت هنگام افزایش بیش از حد سرعت اتومبیل :
این سیستم بر روی برخی از اتومبیلها قرار داده شده و عملکرد آن درست مانند سیستم محدود کننده دور موتور است با این تفاوت که بجای دور موتور ، به سرعت اتومبیل حساس است و با خاموش کردن انژکتورها سرعت را محدود می کند .

تنظیمات بر اساس فشار اتمسفر :
هنگامی که فشار جو کاهش یابد ، ECM طول نبض را هم کاهش می دهد تا مقدار سوخت تزریق شده ، متناسب با مقدار هوای ورودی باشد .

3- تصحیح طول نبض بر اساس نوسانات ولتاژ باتری :
ECM طول نبض را بر اساس تغییرات ولتاژ سیستم تصحیح می کند .
ولتاژ اعمال شده به انژکتورها بر زمانی که هر انژکتور باز می شود و سرعت باز شدن آن اثر می گذارد . ECM با در نظر گرفتن ولتاژ سیستم ، مدت زمان پاشش را تنظیم می کند. اگر ولتاژ سیستم کم باشد ، طول نبض افزایش می یابد . اما زمان باز بودن انژکتور و مقدار پاشش آن نسبت به موقعی که ولتاژ نرمال بود یکسان می ماند . ( سرعت باز شده کاهش و طول مدت باز بودن افزایش می یابد و ایندو در اصل یکدیگر را خنثی می کنند ) .

خنثی کردن اثر بخارات بنزین :
زمانی که شیر تخلیه بخارات باز است ، بخارات بنزین از محفظه نگهدارنده بخارات به داخل منیفولد گاز کشیده می شوند . ECM این مسئله را با کوتاه کردن طول نبض انژکتور جبران می کند .

ریپورتر
14th November 2009, 03:57 PM
سيستم مدار بسته :
سيستمي که ورودي خود را با توجه به اطلاعات حاصل از خروجي تعريف کند ، سيستم مدار بسته ناميده مي شود . سيستم کروز کنترل ، کنترل ضربه سيستم احتراق و سيستم کنترل نسبت هوا به سوخت همه مثالهايي از سيستم هاي مدار بسته هستند .
اگر ecm نسبت هوا به سوخت را با توجه به اطلاعات رسيده از سنسور اکسيژن يا سنسور نسبت هوا به سوخت تعيين کند ، اين سيستم بشکل مدار بسته عمل کرده است .

سيستم کنترل مدار بسته سوخت :
Ecm بايد با تحت نظر گرفتن اگزوز خروجي موتور ، نسبت هوا به سوخت را بدقت تنظيم کند تا کاتاليست کنورتر بتواند با تمام توان عمل کرده و گازهاي مضر خروجي را کاهش دهد.
با دانستن اين نکته که يک مخلوط هوا و سوخت غني به مقدار بيشتري اکسيژن و يک مخلوط رقيق به مقدار کمتري اکسيژن براي احتراق نياز دارد ، اندازه گرفتن مقدار اکسيژن باقي مانده در مواد حاصل از احتراق ، راهي مناسب براي تشخيص رقيق يا غني بودن يک مخلوط هوا به سوخت است . در اين سيستم ، ecm با استفاده از همين اطلاعات ، نسبت هوا به سوخت را تنظيم مي کند .
سنسور اکسيژن ( يا سنسور نسبت هوا به سوخت ) مقدار اکسيژن باقي مانده بعد از احتراق را در جريان خروجي اگزوز مي سنجد . Ecm با استفاده از اطلاعات بدست آمده از اين سنسور و با کنترل زمان عملکرد انژکتورها ، سعي مي کند تا به نسبت مطلوب 1/14.7 برسد.
ضرورت اين مطلب اينجاست که کاتاليست کنورتر تنها زماني به بيشترين بازده خود مي رسد که اين نسبت هوا و سوخت رعايت شود .
مي دانيم که موتور ها اغلب به نسبت هاي هوا به سوخت مختلفي در زمان استارت ، تمام بار و اقتصادي نياز دارند و اين نسبت 1/14.7 تنها شرايط بيشترين بازده کاتاليست را بيان مي کند .

استوکيومتري و بازده کاتاليست :
براي اينکه کاتاليست به حد نهايت بازده خود برسد ، نسبت هوا به سوخت بايد در شرايط استوکيومتري ( 14.7 واحد وزن هوا به 1 واحد وزن سوخت ) باشد . اين مسئله نشان می دهد که چرا ecm سعی می کند که حتی المقدور این نسبت را رعایت کند .


طریقه مدار باز :
Ecm در شرایط زیر به طریقه مدار باز عمل می کند :
- زمان استارت
- زمانی که موتور هنوز سرد است
- شتاب گیری ناگهانی
- زمان قطع پاشش سوخت
- زمانی که دریچه گاز تا انتها باز شده است

اگر هیچکدام از شرایط بالا برقرار نبود و بازهم خللی در عملکرد سیستم مدار بسته وجود داشت ، ممکن است ایراد از سنسور اکسیژن یا مدار گرم کننده باشد .

عملکرد سیستم مدار بسته و سنسور اکسیژن :
در عملکرد بطریقه مدار بسته ، ecm از سیگنال ولتاژ سنسور اکسیژن استفاده کرده و تغییراتی در مدت پاشش انژکتورها می دهد . وقتی ولتاژ بیشتر از 450 میلی ولت باشد ، ecm نسبت هوا به سوخت را غنی در نظر گرفته و زمان پاشش ( و به تبع آن مقدار سوخت پاشیده شده ) را کمتر می کند و این عمل را آنقدر ادامه می دهد تا سنسور اکسیژن تغییر وضعیت ( ولتاژ ) داده و سوخت را رقیق اعلام کند . در این حالت ecm مقدار سوخت پاشیده شده را افزایش می دهد تا دوباره سنسور اکسیژن اعلام کند که سوخت غنی شده است . حال ecm به آهستگی مقدار سوخت را کاهش می دهد .
بنابر این نسبت هوا به سوخت واقعی همیشه در اطراف نسبت مطلوب و بسیار نزدیک به آن نوسان می کند .در نتیجه نسبت هوا به سوخت بطور متوسط بر روی 1/14.7 قرار می گیرد و مخلوط مناسبی از گازهای خروجی را برای هرچه بهتر عمل کردن کاتالیست فراهم می کند .
فرکانس این نوسانات بستگی به حجم گازهای خروجی اگزوز ( دور موتور و بار موتور ) ، زمان پاسخگویی سنسور اکسیژن و برنامه های کنترل سوخت ecm دارد .
در حالت خلاص کار کردن موتور ، حجم گازهای خروجی آن کم است و فرکانس تغییرات سنسور اکسیژن کم می شود . زمانی که سرعت موتور افزایش یابد ، فرکانس تغییرات سنسور اکسیژن افزایش می یابد .

عملکرد سیستم مدار بسته و سنسور نسبت هوا به سوخت :
اگر در سیستم مدار بسته بجای سنسور اکسیژن از سنسور نسبت هوا به سوخت استفاده شود ، تصحیح نسبت هوا به سوخت سریعتر و دقیقتر صورت می گیرد . زیرا تغییرات ولتاژ سنسور اکسیژن در شرایط استوکیومتری و در غیر این شرایط یکسان نیست و این امر از دقت کنترل نسبت هوا به سوخت می کاهد و ecm را مجبور می سازد تا مرحله به مرحله مقدار سوخت را تغییر دهد و منتظر تغییر ناگهانی ولتاژ سنسور اکسیژن بماند .
در مقابل ، ولتاژ خروجی یک سنسور نسبت هوا به سوخت همیشه متناسب با نسبت هوا به سوخت است و نوسانی بین نسبت غنی و رقیق رخ نمی دهد . حال ecm دقیقا می داند که چه وقت نسبت هوا به سوخت از نسبت مطلوب منحرف شده و بسرعت زمان عملکرد انژکتورها را تصحیح می کند .
این تصحیح بموقع ، مقدار گازهای مضر خروجی را می کاهد . زیرا ecm بهتر می تواند نسبت مطلوب را رعایت کرده و شرایط مناسبی را برای عملکرد هرچه بهتر کاتالیست فراهم کند .

استفاده از تمامی مطالب سایت تنها با ذکر منبع آن به نام سایت علمی نخبگان جوان و ذکر آدرس سایت مجاز است

استفاده از نام و برند نخبگان جوان به هر نحو توسط سایر سایت ها ممنوع بوده و پیگرد قانونی دارد