PDA

توجه ! این یک نسخه آرشیو شده میباشد و در این حالت شما عکسی را مشاهده نمیکنید برای مشاهده کامل متن و عکسها بر روی لینک مقابل کلیک کنید : مقاله سوخت هيدروژن



ØÑтRдŁ§
7th September 2009, 04:10 AM
امروزه گاز هيدروژن براي استفاده در موتورهاي احتراقي و وسايل نقليه الكتريكي باتري‌دار مورد بررسي قرار گرفته است. هيدروژن در دما و فشار طبيعي، يك گاز است و به اين علت، انتقال و ذخيره آن از سوخت هاي مايع ديگر، دشوارتر است. سامانه ‌هايي كه براي ذخيره هيدروژن توسعه يافته‌اند، عبارتند از:

هيدروژن فشرده، هيدروژن مايع و پيوند شيميايي ميان هيدروژن و يك ماده ذخيره (براي مثال، هيدريد فلزات).

با اين كه تاكنون هيچ سامانه حمل و نقل و توزيع مناسبي براي هيدروژن وجود نداشته، اما توانايي توليد اين سوخت از مجموعه متنوعي از منابع و خصوصيت پاك سوز بودن آن، هيدروژن را به سوخت جانشين مناسبي تبديل كرده است.
هيدروژن يکي از ساده‌ترين و سبك‌ترين سوخت هاي گازي است که در فشار اتمسفري و دماي جوي حالت گاز دارد. سوخت هيدروژن همان گاز خالص هيدروژن نيست، بلكه مقدار كمي اكسيژن و ديگر مواد را نيز با خود دارد. منابع توليد سوخت هيدروژن شامل گاز طبيعي ، زغال سنگ ، بنزين و الكل متيليك هستند. فرآيند فتوسنتز در باكتري ها يا جلبك ها و يا شكافتن آب به دو عنصر هيدروژن و اكسيژن به كمك جريان الكتريسيته يا نور مستقيم خورشيد از آب، روش هاي ديگري براي توليد هيدروژن هستند.
در صنعت و آزمايشگاه هاي شيمي، توليد هيدروژن به طور معمول با استفاده از دو روش شدني است:
1- الكتروليز
2- توليد گاز مصنوعي از بازسازي بخار يا اكسيداسيون ناقص
در روش الكتروليز با استفاده از انرژي الكتريكي، مولكول‌هاي آب به هيدروژن و اكسيژن تجزيه مي‌شوند. انرژي الكتريكي را مي‌توان از هر منبع توليد الكتريسيته كه شامل سوخت هاي تجديد پذير نيز مي‌شوند، به دست آورد. وزارت نيروي آمريكا به اين نتيجه رسيده است كه استفاده از روش الكتروليز براي توليد مقادير زياد هيدروژن در آينده مناسب نخواهد بود.
روش ديگر براي توليد گاز مصنوعي، بازسازي بخار گاز طبيعي است. در اين روش، مي‌توان از هيدروكربن‌هاي ديگر نيز به عنوان ذخاير تامين مواد استفاده كرد. براي نمونه، مي‌توان زغال سنگ و ديگر مواد آلي (بيوماس) را به حالت گازي درآورد و آن را در فرآيند بازسازي بخار براي توليد هيدروژن به كار برد. از طرفي چون هيدروکربن هاي فسيلي محدود و رو به اتمام هستند، پس بهتر است ديد خود را به سمت استفاده از منابع تجديد شونده معطوف کنيم.
گاز هيدروژن مي تواند هم از منابع اوليه تجديد پذير و هم از منابع تجديد ناپذير توليد شود. امروزه توليد گاز هيدروژن از منابع تجديد پذير به سرعت مراحل توسعه و رشد خود را مي پيمايد. اين در حالي است که توليد گاز هيدروژن از منابع تجديد ناپذير به ويژه منابع فسيلي به علت محدود بودن اين منابع روز به روز کاهش مي يابد.

گاز هيدروژن در اثر واکنش هاي تخميري ميکروارگانيسم هاي زنده، به ويژه باکتري ها و مخمرها روي بيوماس، توليد مي‌شود. بيوماس از منابع اوليه تجديد پذير است که از موادي مانند علوفه، ضايعات گياهان و فضولات حيوانات به دست مي آيد. در روند توليد گاز هيدروژن، باکتري هاي بي هوازي با استفاده از پديده تخمير، مواد آلي و آب را به گاز هيدروژن تبديل مي کنند.
براي توليد هيدروژن به وسيله باکتري ها دو نوع تخمير وجود دارد: يک نوع تخمير نوري است که در آن به منبع نور نياز است و نوع ديگر، تخمير در تاريکي است که نيازي به نور ندارد. در اين واکنش ها منابع کربني زيادي استفاده مي شود که همگي از بيوماس تامين مي شوند.

در طبيعت ميکروارگانيسم هاي بي هوازي در غياب اکسيژن و با استفاده از پديده تخمير، گاز هيدروژن توليد مي کنند، ولي مقدار اين گاز از نظر کمي پايين است و از نظر اقتصادي براي مصارف صنعتي و خانگي و ... قابل توجيه نيست؛ از اين رو بايد با استفاده از روش هايي، بازده توليد گاز هيدروژن را افزايش داد. يکي از روش هايي که مي توان بازده توليد گاز هيدروژن را بالا برد، تغييرات ژنتيک در ژنوم اين باکتري ها با استفاده از روش هاي مهندسي ژنتيک و بيوتکنولوژي است. روش ديگر، استفاده از ترکيبي از باکتري هاي هوازي و بي هوازي در کنار هم است. در اين روش چون باکتري هاي بي هوازي در فرآيند تخمير توليد اسيد هاي آلي مي کنند، رفته رفته محيط واکنش اسيدي مي شود و PH پايين مي آيد؛ از اين رو توليد هيدروژن کاهش مي يابد. ولي هنگامي که باکتري هاي هوازي در محيط باشند، از اسيد هاي آلي استفاده و آنها از محيط خارج مي کنند؛ در نتيجه راندمان توليد گاز هيدروژن بالا مي رود.

تحقيق و توسعه

وزارت نيروي آمريكا براي توسعه استفاده از هيدروژن دو برنامه اصلي را دنبال مي‌كند که يکي برنامه هيدروژن وزارت نيرو و ديگري شبكه اطلاعاتي تكنولوژي‌هاي هيدروژن است. هيدروژن، سومين انرژي فراوان بر روي سطح زمين است. همان طور كه به صورت ابتدايي در آب و تركيبات آلي يافت مي شود. هيدروژن از هيدروكربن ها يا آب به دست مي آيد و هنگامي كه به عنوان سوخت مصرف مي شود، يا براي توليد الكتريسيته از آن استفاده مي شود و يا با تركيب مجدد با اكسيژن توليد آب مي كند. از اين رو و با توجه به قابليت بالاي توليد انرژي در اين سوخت اخيراً تلاش هاي زيادي براي جانشين کردن اين سوخت صورت مي گيرد.

مسائل ايمني

هيدروژن از ديدگاه ايمني نيز مطمئن و مطلوب است و براي حمل ونقل ، نگهداري و استفاده، خطرناك تر از سوخت هاي رايج ديگر نيست. به هر صورت مسائل ايمني همچنان به عنوان يكي از اساسي‌ترين مقوله ها در استفاده از انرژي هيدروژن باقي مي ماند.استانداردهاي متداول دنيا امنيت استفاده از آن را با سختگيري در طراحي‌ و انجام آزمايش هاي متعدد فراهم مي آورد. همچنين در حوزة نگهداري و حمل آن، استانداردهاي بسياري براي تمام تجهيزات مرتبط تدوين شده است.

اقتصاد هيدروژن

براي هيدروژن به عنوان يك سوخت، سيستم توزيعي مناسبي وجود ندارد. با اين كه معمولاً انتقال از طريق خط لوله با صرفه‌ترين راه انتقال سوخت‌هاي گازي است، اما در حال حاضر سيستم خط لوله مناسبي موجود نيست. انتقال هيدروژن به طور خاص از طريق مخزن و تانكرهاي گاز صورت مي‌گيرد. استفاده از هيدروژن به عنوان سوخت به يك زير ساختار براي حمل ونقل و نگهداري و با توجه به مسائل ايمني و اقتصادي نياز دارد.
ديدگاه ايجاد يك زير ساختار كه هيدروژن را به عنوان منبع انرژي مورد استفاده قرار مي‌دهد، مفهوم اقتصادي بودن اين طرح را پديد آورده كه بهترين راه جهت ايجاد تقاضاي بيشتر براي توليد و مصرف اين انرژي است، زيرا منابع توليد هيدروژن بسيار ارزان و دردسترس هستند. هيدروژن قابليت بالايي براي توليد انرژي دارد و ميزان آلودگي ناشي از مصرف اين سوخت در محيط زيست بسيار کم است. اين سوخت به عنوان منبعي تجديدپذير، پاک و فراوان تر از سوخت فسيلي مي تواند کاربرد زيادي براي نيروگاه ها و بخش حمل و نقل داشته باشد.


نويسنده : س.خ - شانا (info@assaluyeh.com)

منبع : سايت عسلويه

آبجی
13th February 2010, 01:47 AM
هيدروژن فراوان ترين عنصر طبيعت محسوب مي شود بنابراين دانشمندان در تلاش اند تا راهي بيابند كه بتوان از هيدروژن به عنوان سوخت در خودروها استفاده كرد.
آزمايشات انجام گرفته در ايستگاه فضايي بين المللي مي تواند حركت به سوي اقتصاد مبتني بر هيدروژن را تسريع كند. تصور كنيد براي سوخت گيري خودروتان به سمت جايگاه سوخت رساني حركت مي كنيد، دهانه لوله سوخت رساني را وارد مخزن سوخت خودرو مي كنيد، اما سوختي كه مصرف مي كنيد، از نوع سوخت هاي متداول نيست بلكه هيدروژن است. هيدروژن گازي بي رنگ و بي بو است كه از سوختن آن فقط بخار آب حاصل مي شود كه سريع و بدون هيچ خطري توسط محيط اطراف جذب مي شود. يك كيلوگرم از هيدروژن تقريباً سه برابر همين ميزان بنزين انرژي آزاد مي كند.

و اين در حالي است كه هيدروژن فراوان ترين عنصر طبيعت محسوب مي شود! پس جاي تعجب نيست كه چرا دانشمندان در تلاش اند تا راهي بيابند كه بتوان از هيدروژن به عنوان سوخت در خودروها استفاده كنند. ال ساكو مدير مركز توليد مواد پيشرفته تحت جاذبه ضعيف (CAMMP) در دانشگاه نورسسترون بوستون كه زير نظر ناسا مشغول فعاليت است در اين زمينه مي گويد: «ده ها شركت از جمله بزرگ ترين شركت هاي سازنده خودرو، موتورهايي را طراحي كرده اند كه از هيدروژن به عنوان سوخت استفاده مي كند. اين موتورها بسيار شبيه به موتورهاي احتراق داخلي هستند كه ما امروزه به طور گسترده اي از آنها استفاده مي كنيم. سلول هاي سوختي - يكي ديگر از منابع ممكن براي توليد نيرو در خودروها - نيز از هيدروژن استفاده مي كنند. براي آنكه استفاده از اين فناوري ها در زندگي روزمره ممكن شود، لازم است دانشمندان راهي براي ذخيره سازي و انتقال ايمن هيدروژن بيابند كه از لحاظ هزينه به صرفه بوده و با هزينه هاي استفاده از بنزين قابل مقايسه باشد.»

اما انجام اين كار چندان هم آسان نيست. گاز هيدروژن سبك و فرار است. مولكول هاي كوچك H2 از طريق روزنه ها و شكاف ها و همچنين از طريق بست ها و شيرها بسيار سريع نشت مي كنند و هنگامي كه از اين طريق خارج شدند خيلي زود تبخير مي شوند. هيدروژن چهار برابر سريع تر از متان و ده برابر سريع تر از بخارهاي بنزين نفوذ مي كند. اين مسئله در مورد حفظ ايمني دستگاه از اهميت بسيار زيادي برخوردار است چرا كه قطرات هيدروژن بسيار سريع تبخير شده و در محيط پراكنده مي شوند و مي توانند ايمني سيستم را به خطر اندازند. اين مسئله مي تواند براي هر كسي كه مي خواهد گاز هيدروژن را ذخيره كند، دردسرساز شود. هر چند كه هيدروژن مايع بسيار متراكم است و ذخيره سازي آن آسان به نظر مي رسد، اما در عين حال ذخيره كردن آن مي تواند مشكلاتي را نيز به همراه داشته باشد. هيدروژن حدوداً در دماي 20 درجه كلوين (253 درجه سانتي گراد) مايع مي شود. نگهداري از يك مخزن پر از هيدروژن مايع نيازمند استفاده از يك سيستم خنك كننده جانبي سنگين است، فعلاً استفاده از اين سيستم ها در خودروهاي مسافربري معمولي مقدور نيست. هيدروژن مايع چنان سرد است كه حتي مي تواند باعث منجمد شدن هوا نيز شود.

اين امر مي تواند به مسدود شدن شيرها و اتصالات منجر شود كه افزايش ناخواسته فشار را به همراه دارد. البته ممكن است گفته شود براي مقابله با انجماد هوا از سيستم هاي عايق كاري استفاده شود، اما اين كار نيز مشكلاتي را در پي دارد كه از جمله آنها مي توان به افزايش وزن سيستم ذخيره سازي سوخت اشاره كرد. با اين تفاسير چگونه مي توان بر مشكلات پيش رو غلبه كرد؟ ساده است: چند قطعه سنگ را در داخل مخزن سوخت قرا دهيد. البته در اين مورد نمي توان از سنگ هاي معمولي استفاده كرد بلكه بايد از سنگ هاي ويژه اي كه زئوليت (Zeolite) نام دارند استفاده كرد. ساكو در تشريح خواص اين سنگ ها مي گويد: «زئوليت ها موادي از جنس سنگ هستندكه بسيار متخلخلند و به همين دليل مي توانند به عنوان اسفنج هاي مولكولي عمل كنند. زئوليت ها در شكل كريستالي خود به صورت شبكه گسترده اي از حفره ها و شكاف هاي به هم پيوسته در نظر گرفته مي شوند كه بسيار شبيه كندوي زنبور عسل است. يك مخزن سوخت كه در ساختار آن از اين موارد كريستالي استفاده شده است، مي تواند گاز هيدروژن را «در حالت شبه مايع و بدون نياز به سيستم هاي خنك كننده سنگين» به دام انداخته و در خود ذخيره كند. ساكو و همكارانش در نظر دارند، با استفاده از كمك هاي برنامه توسعه توليدات فضايي ناسا كه در مركز پروازهاي فضايي مارشال مستقر است، ايده استفاده از زئوليت ها در مخزن سوخت را عملي سازند. نام زئوليت از كلمات يوناني «Zeo » به معناي جوشيدن و «lithos » به معناي جوشيدن مشتق شده است و معناي تحت اللفظي آن «سنگي كه مي جوشد» است. اين نام را به اين دليل به اين سنگ ها اطلاق مي كنند كه هنگامي كه تحت تاثير حرارت قرار مي گيرند، محتويات خود را خارج مي كنند. ساكو طرز كار مخزن هاي سوخت زئوليت دار كه در دما كنترل مي شود را اين گونه شرح مي دهد: «در ابتدا بايد مقداري يون هاي با بار منفي را به اين زئوليت ها بيافزاييم. اين يون ها مثل تشتك عمل مي كنند، درست مثل درپوش دوات؛ و بدين ترتيب حفره هاي موجود در شبكه كريستالي را مسدود مي كنند. مي توان با حرارت دادن زئوليت به ميزان بسيار جزيي يون ها را از مقابل اين حفره ها به كناري راند. مي توان زئوليت ها را از هيدروژن انباشته كرد و سپس دماي آن را به حالت عادي برگرداند، با اين كار يون ها به جاي قبلي خود برمي گردند و مانع خروج محتويات حفره ها مي شوند.»

حدود 50 نوع زئوليت مختلف با تركيب شيميايي و ساختار كريستالي متفاوت در طبيعت يافت مي شود، گذشته از اين شيميدان ها روش ساخت مصنوعي تعداد ديگري از آنها را دريافته اند. كساني كه گربه دارند ممكن است با اين مواد آشنايي داشته باشند. چرا كه از اين مواد به عنوان بوگير در بستر حيوان استفاده مي شود. ساكو خاطرنشان مي سازد: «با استفاده از زئوليت هاي موجود مي توان مقدار كمي از هيدروژن را ذخيره كرد، اما اين مقدار كافي نيست.» پس چه مقدار هيدروژن كافي است؟

تصور كنيد ديواره مخزن سوخت خودروي شما توسط سنگ هاي متخلخل و كريستالي پوشيده شده است و اين سنگ ها حدود 40 كيلوگرم وزن دارد. به جايگاه سوخت گيري مراجعه مي كنيد و متصدي جايگاه حدود 5/3 كيلوگرم هيدروژن را به مخزن پوشيده از زئوليت خودروي شما تزريق مي كند.از لحاظ نظري اين مقدار هيدروژن، هم از لحاظ وزني و هم از لحاظ مقدار انرژي ذخيره شده در آن برابر مخزني پر از بنزين است. ساكو خاطر نشان مي سازد: «اگر بتوان كريستال هايي از زئوليت توليد كرد كه بتواند حدود 6 تا 6 درصد از وزن خود را، هيدروژن ذخيره كند، آن وقت يك مخزن زئوليتي پر از هيدروژن مي تواند با يك مخزن معمولي پر از بنزين رقابت كند.» با اين همه بهترين زئوليت هاي موجود مي توانند فقط 2 تا 3 درصد از وزن خود را هيدروژن ذخيره كنند. در سال 1995 ساكو به عنوان يكي از متخصصين يك ماموريت به وسيله شاتل فضايي، كلمبيا (sts-73) به فضا مسافرت كرد. هدف وي از اين ماموريت اين بود كه بتواند زئوليت هايي با كيفيت بهتر را در فضا توليد كند. «در محيطهاي با گرانش كم، مواد با سرعت بسيار كمتري گرد هم مجتمع مي شوند و اين اثر باعث مي شود كه كريستال هاي زئوليت به وجود آمده هم بزرگ تر باشند و هم از نظم بيشتري برخوردار شوند.»

كريستال هاي زئوليت توليد شده در زمين بسيار كوچك هستند و ضخامت آنها در حدود 2 تا 8 ميكرون است. اين مقدار حدود يك دهم ضخامت موي انسان است. اما كريستال هايي را كه ساكو توانست در فضا تهيه كند هم ده مرتبه بزرگ تر بودند و هم ساختار داخلي مناسب تري داشتند و اين شروع مسرت بخشي بود.

ساكو مي گويد: «مراحل بعدي كار را بايد در ايستگاه فضايي بين المللي انجام داد.» ساكو و همكارانش يك كوره توليد كريستال هاي زئوليت ساخته اند، كه در ابتداي سال 2002 در ايستگاه فضايي بين المللي نصب شده است. كن بوور ساكس فرمانده يكي از ماموريت هاي ايستگاه فضايي بين المللي از اين كوره براي توليد چند نمونه از كريستال ها استفاده كرده است. كن در حين كار مجبور بود بعضي از مشكلات غيرمنتظره به وجود آمده هنگام اختلاط محلول هاي به كار رفته در رشد كريستال ها را حل كند - اين امر ارزش حضور انسان در هنگام آزمايشات فضايي را نشان مي دهد - اما از آن پس آزمايشات مربوط به اين گونه كريستال ها با سرعت كمتري به پيش مي رود. ساكو مي گويد در مرحله بعد بايد كريستال هاي توليد شده در فضا را به زمين منتقل كرد و آزمايشات مربوطه را روي آنها انجام داد. البته وي خاطرنشان مي سازد كه هدف آنها توليد انبوه كريستال هاي زئوليت در فضا نيست، چرا كه اين كار - حداقل فعلاً - مقرون به صرفه نيست. وي مي گويد ما فقط مي خواهيم دريابيم آيا مي توان زئوليت هايي را ساخت كه بتوانند هفت درصد از وزن خود را هيدروژن ذخيره كنند يا خير؟ اگر بتوان اين كار را در فضا انجام داد، آن وقت مي توان با اتخاذ تدابير ويژه اي دريافت كه چگونه همين فرآيند را در زمين به گونه مشابهي انجام داد.

در تمام طول دوره انجام اين تحقيقات ساكو در فكر تغيير مصرف سوخت و تحول جهاني از سوخت هاي فسيلي به سمت سوخت هيدروژني بود. اين ايده رويايي بزرگ است اما مي توان به آن دست يافت. زئوليت ها مي توانند به عنوان نكته كليدي براي استفاده از سوخت هيدروژن و رد شدن از سد مشكلات فناوري محسوب شوند. به زودي اين ايده فراگير خواهد شد، آن وقت احتمالاً كسي از شما خواهد پرسيد... «آيا در اين نزديكي جايگاه سوخت هيدروژن وجود دارد؟»

استفاده از تمامی مطالب سایت تنها با ذکر منبع آن به نام سایت علمی نخبگان جوان و ذکر آدرس سایت مجاز است

استفاده از نام و برند نخبگان جوان به هر نحو توسط سایر سایت ها ممنوع بوده و پیگرد قانونی دارد