sahar mashmouli
2nd October 2014, 01:01 PM
الف) ریاضیات کاربردی
۱-آنالیز عددی(Numerial Analysis)
محاسبات عددی یا آنالیز عددی به تنظیم، مطالعه، و اعمال شیوه های تقریبی محاسباتی برای حلّ آن دسته از مسائل ریاضیات پیوسته (در مقابل ریاضیات گسسته) میپردازد که با روشهای تحلیلی و دقیق قابل حلّ نیستند. برخی از مسائل مورد نظر محاسبات عددی به طور مستقیم از حسابان می آید. جبر خطی عددی (بر روی میدانهای حقیقی یا مختلط) و نیز حلّ معادلات دیفرانسیل خطّی و غیر خطّی مربوط به فیزیک و مهندسی از جملهٔ زمینه های دیگر برای کاربرد محاسبات عددی است.
2- تحقیق در عملیات (Operations Research به اختصار OR)
شاخهای میان رشته ای از ریاضیات است که برای یافتن نقطه بهینه در مسائل بهینه سازی، از گرایشهایی مانند برنامه ریزی ریاضی، آمار و طراحی الگوریتمها استفاده می کند. یافتن نقطه بهینه براساس نوع مسئله مفاهیم مختلف دارد و در تصمیم سازیها استفاده میشود. مسائل تحقیق در عملیات بر بیشینهسازی (ماکزیممسازی) -مانند سود، سرعت خط تولید، تولید زراعی بیشتر، پهنای باند بیشتر و غیره- یا کمینهسازی (مینیممسازی) -مانند هزینه کمتر و کاهش ریسک و غیره، با استفاده از یک یا چند قید تمرکز دارند. ایدهٔ اصلی تحقیق در عملیات یافتن بهترین پاسخ برای مسائل پیچیدهای است که با زبان ریاضیمدلسازی شدهاند که باعث بهبود یا بهینهسازی عملکرد یک سامانه میشوند.
۳-نظریه گراف و ترکیبیات(Graph Theory and Combinatorics)
نظريه گراف ضمن اينكه يكي از بخش هاي با قدمت دانش رياضي محسوب مي گردد، يكي از پركاربردترين شاخه هاي رياضي در ساير علوم نيز مي باشد. كاربردهاي آن در بيولوژي، شيمي، فناوري نانو، تحقيق در عمليات و علوم مهندسي بسيار فراوان مي باشد. لازم به ذکر است که این گرایش در اغلب کشورهای خارجی زیر مجموعه ریاضی محض محسوب می شود.
4-متروید(Matroid)
مترویدها اولین بار توسط ویتنی در سال 1935 در تلاش برای فراهم آوردن یک رفتار مجرد یکسان از وابستگی در جبر خطی و نظریه گراف معرفی شدند. نام متروید ساختاری مربوط به یک ماتریس را القا میکند. تعریف ویتنی تنوع شگفتانگیز از ساختارهای ترکیبیاتی را در برداشت. از این گذشته مترویدها به طور طبیعی در بهینهسازی ترکیبیاتی پدیدار میشوند، زیرا آنها دقیقا همان ساختارهای ترکیبیاتی هستند که الگوریتم حریصانه برای آن به نتیجه میرسد.
رشته مترويد در ایران، اولين بار در سال 1383 در دانشگاه اروميه ارائه شد.
5- معادلات ديفرانسيل (Differential Equations)
نظريه معادلات ديفرانسيل يك بخش بنيادي از دانش رياضي بوده و ضمن داشتن قدمت كاربردهاي بيشماري در فيزيك و مهندسي و پزشكي دارو به يقين مي توان گفت يكي از پايه هاي اصلي اين علوم معادلات ديفرانسيل است. برگزاري كنفرانس ها و صرف بودجه هاي هنگفت پژوهشي خود دليل نقش كليدي و كاربردي اين رشته در پيشرفت علمي و تكنولوژي مي باشد.
6-نظریه رمز و کریپتوگرافی(Cryptography)
دانشی است که به بررسی و شناختِ اصول و روشهای انتقال یا ذخیرهٔ اطلاعات به صورت امن (حتی اگر مسیر انتقال اطلاعات و کانالهای ارتباطی یا محل ذخیره اطلاعات ناامن باشند) میپردازد.
متخصص در این رشته بسیار کم است .
7- ریاضیات مالی(Financial Mathematics)
ریاضیات مالی شیرین وجذاب است چون تکنیکها و شاخههای محض ریاضیات، نظریه اندازه احتمال را با کاربردهای تجربی که روی زندگی روزانه مردم تأثیر دارد ترکیب میکند. ریاضیات مالی مهیج است چون با بکاربردن ریاضیات پیشرفته، نظریههای اساسی و بنیادی اقتصاد و مالی را ترقی میدهد. برای درک کردن تأثیر این کار، لازم است بدانیم بسیاری از نظریه مالی مدرن، از جمله جایزه نوبل، بر اساس فرضهای تحمیل شده هستند، نه به این خاطر که آنها پدیدههای مشاهده شده را منعکس میکنند بلکه به این خاطر که بصورت ریاضی درآوردهشدهاند. همانطور که فیزیک انگیزه ریاضیات جدید شده است، ریاضیات مالی ریاضیات جدید را به سمت مدل کردن مشاهدات اقتصادی پیش میبرد.
تحقیق و تدریس در این رشته در ایران کم میباشد. اما مطمئنا در آینده جز رشتههای پرطرفدار محسوب خواهد گردید.
8- ریاضیات صنعتی(Industrial Mathematics)
همانگونه که از نام این رشته پیداست کاربرد ریاضی در علوم فنی بررسی می شود. در ایران مقطع دکتری این رشته وحود ندارد اما دوره کارشناسی ارشد این گرایش برگزار می شود.
9-بهینه سازی(Mathematical Optimization)
شاخهای از ریاضیات است که در آن سعی میشود که ماکزیمم و مینیمم یک سیستم معادلات را با توجه به یکسری الزامات، به دست آورد.
10-منطق فازی (Fuzzy logic)
اولین بار در پی تنظیم نظریهٔ مجموعههای فازی به وسیلهٔ پروفسور لطفی زاده (۱۹۶۵ م) در صحنهٔ محاسبات نو ظاهر شد.
دانش مورد نیاز برای بسیاری از مسائل مورد مطالعه به دو صورت متمایز ظاهر میشود:
۱. دانش عینی مثل مدلها، و معادلات، و فورمولهای ریاضی که از پیش تنظیم شده و برای حل و فصل مسائل معمولی فیزیک، شیمی، یا مهندسی مورد استفاده قرار میگیرد.
۲. دانش شخصی مثل دانستنیهایی که تا حدودی قابل توصیف و بیان زبانشناختی بوده، ولی، امکان کمی کردن آنها با کمک ریاضیات سنتی معمولاً وجود ندارد.
از آن جا که در عمل هر دو نوع دانش مورد نیاز است منطق فازی میکوشد آنها را به صورتی منظم، منطقی، و ریاضیاتی بایکدیگر هماهنگ گرداند.
11- سيستم هاي ديناميكي (Dynamical System)
گرایش سیستمهای دینامیکی یکی از گرایش های ریاضیآت محض و کاربردی است. در گرایش کاربردی، هدف آن مطالعه و بررسی سیستم هایی است که با گذر زمان تغییر می کنند البته هم سیستم های زمان گسسته و هم زمان پیوسته.نظريه سيستم هاي ديناميكي و كنترل به بررسي رفتار كيفي پديده هاي طبيعي و مصنوعي و كنترل آن مي پردازد. اين پديده ها در حوزه وسيعي از بيولوژي و افتصاد گرفته تا تكنولوژي فضايي گسترده شده اند. ابزار رياضي مورد استفاده نيز طيف وسيعي از دانش رياضي را دربر مي گيرد.
ب) ریاضیات محض:
1- جبر(Algebra)
جبر مجرّد شاخهایست از ریاضیات که به بررسی ساختارهای جبری مثل گروه، حلقه، و میدان میپردازد. آغاز تعریف رسمی این گونه ساختارها به قرن نوزدهم (م) باز میگردد.
اصطلاح «جبر مجرّد» در برابر «جبر مقدّماتی »ا «جبر دبیرستانی» بهکار میرود. در حدود نیمه اوّل قرن بیستم این رشته را «جبر مدرن» مینامیدند.
جبر مجرد مقدماتی،اشیاء و اعمال ریاضی را،فارغ از ماهیت آنها بررسی میکند. اعداد، توابع، ماتریسها،از عناصر آن و اعمال دوتایی ضرب،ترکیب توابع و ... از اعمال آن به شمار میآیند.
دسته بندی گروهها و حلقهها، مدولهااز موضوعات اساسی این شاخه به حساب میآیند.برخی شاخههای هندسی با جبر مجرد ارتباط پیدا میکنند.
جبر مقدماتی بهمراه جبر مجرد و جبر خطی سه شاخهٔ اصلی دستگاه جبر را تشکیل میدهند.از دروس اختصاصي اين رشته جبر3، جبرحلقهها، جبر جابجایی، جبر همولوژی،جبر ناجابجايي، نظریه نمایش و ... است. تحقيقات مربوط به اين رشته کاربردهاي جالب توجهي در زمينه هاي پزشکي، شيمي اتم و کيهان شناسي دارد.
این رشته دارای چندین زیرشاخه مهم به شرح زیر است:
جبرجابجایی
جبر ناجابجایی
نظریه گروهها
نظریه حلقه ها و مدولها
جبر ترکیبیاتی
هندسه جبری
مقطع کارشناسی ارشد این رشته در اکثر دانشگاههای کشور که دانشجوی ارشد ریاضی دارند تدریس میشود.
2- آنالیزریاضی(Mathematical Analysis)
آنالیز نام عمومی آن بخشهائی از ریاضیات است که با مفاهیم حد و همگرایی مربوطاند و در آنها موضوعاتی مثل پیوستگی و انتگرالگیری و مشتقپذیری و توابع غیرجبری بررسی میشود. این موضوعات را معمولاً در عرصه اعداد حقیقی یا اعداد مختلط و توابع مربوط به آنها بحث میکنند ولی میتوان آنها را در هر فضائی از موجودات ریاضی که در آن مفهوم "نزدیکی" (فضای توپولوژیک) یا "فاصله" (فضای متریک) وجود دارد بهکار برد. آنالیز ریاضی از کوششهای مربوط به دقیق کردن مبانی و تعریفهای حسابان سر برآورده است.
انالیز ریاضی در واقع به نقاط استثنایی ریاضیات میپردازد . کلمه انالیز به همین معنی [: نقاط استثنایی] است
از دروس اختصاصي اين رشته در مقطع کارشناسي ارشد آناليز تابعي، آناليز هارمونيک، آناليز حقيقي و... است. این رشته دارای چندین زیرشاخه به شرح زیر است:
آنالیز حقیقی
آنالیز مختلط
آنالیز عددی
آنالیز تابعی
آنالیز هارمونیک
آنالیز غیراستاندارد
بیشتر عنوان تز دانشجو مشخص کننده رشته تخصصی دانشجو است. عموماً نتايج تحقيقات اين رشته براي علوم مختلف قابل استفاده است. برخي دانشگاهها هنگام انتخاب رشته دانشجويان رابه تفکيک گرايش انتخاب مي کنند. اما برخي ديگر مانند گرايشهاي مقطع کارشناسي در دو گرايش محض و کاربردي دانشجو ميپذيرند و مثلاً دانشجوي گرايش محض در هر يک از گرايشهاي جبر، آناليز و... ميتواند ادامه تحصيل دهد.
مقطع کارشناسی ارشد این رشته در اکثر دانشگاههای کشور که دانشجوی ارشد ریاضی دارند تدریس میشود.
3- هندسه(Geometry)
هِندِسه مطالعه انواع روابط طولی و اشکال و خصوصیات آنها است. این دانش همراه با حساب یکی از دو شاخه قدیمی ریاضیات است.
واژه هندسه عربی شده واژه " اندازه" در فارسی است. در زبان انگلیسی به آن geometry و در زبان فرانسه به آن géométrie میگویند که هردو از γεωμετρία) گئومتریا) در زبان یونانی آمده که به معنای اندازهگیری زمین است.
کلاسه بندی هندسه
1-هنـدسه مقـدماتی به دو قسمت تقسیـم میگردد:
هنـدسه مسطحه
هندسه فضائی
در هندسه مسطح، اشکالی مورد مطالعه قرار میگیرند که فقط دو بعد دارند، هندسه فضایی، مطالعه اشکال هندسی سه بعدی است. این بخش از هندسه در مورد اشکال سه بعدی چون مکعبها ،استوانه ها، مخروط ها، کرهها و غیره است.
2-در هندسه مدرن شاخههای زیر مورد مطالعه قرار میگیرند:
هندسه تحلیلی
هندسه برداری
هندسه دیفرانسیل
هندسه جبری
هندسه محاسباتی
هندسه اعداد صحیح
هندسه اقلیدسی
هندسه نااقلیدسی
هندسه تصویری
هندسه ریمانی
هندسه ناجابجایی
هندسه هذلولوی
صاحب نظر و متخصص در این گرایش در ایران کم میباشد.
4-توپولوژی(Topology)
توپولوژی شاخهای از ریاضیات است که به بررسی فضاهای توپولوژیکی میپردازد. توپولوژی یکی از شاخههای نسبتاً جوان ریاضیات است.
نام این رشته از واژههای یونانی توپو (Topo) بهمعنی مکان و (Logos) بهمعناي شناخت گرفته شده است. بنابراين، توپولوژی یعنی مکانشناسی.
فرهنگستان زبان و ادب فارسی برای توپولوژی واژهای معادل پیشنهاد نکرده است و همان توپولوژی را در نظر گرفته است.
توپولوژی یکی از زمینههای مهم ریاضیات است که از پیشرفت مفاهیم هندسی و تئوری مجموعهها مانند فضا، بعد، اشکال، تبدیلات و... بوجود آمدهاست.
لغت توپولوژی هم به معنای زمینهای در ریاضیات است و هم برای خانوادهای از مجموعهها که دارای خصوصیات مخصوصی که برای تعریف فضای توپولوژیک، که شی بنیادین توپولوژی است، استفاده میشود.
توپولوژی دارای زیرشاخههای زیادی است. بنیادی ترین و قدیمی ترین زیرشاخه، توپولوژی نقطه-مجموعهاست که بنیادهای توپولوژی بر آن بنا شدهاست و به مطالعه در زمینههای فشردگی، پیوستگی و اتصال میپردازد. یکی دیگر از زیرشاخههای توپولوژی، توپولوژی جبری است که سعی در محاسبه درجه اتصال دارد، توپولوژی جبری در حقیقت بکار بردن روشهای جبری برای دریافت اطلاعات توپولوژیک است. همچنین توپولوژی زیرشاخههایی مانند توپولوژی دیفرانسیل، توپولوژی گراف و توپولوژی ابعاد کم را نیز داراست.
5- منطق ریاضی(Mathematical Logic)
منطق ریاضی ، شاخهای از ریاضیات است که به ارتباط ریاضی و منطق می پردازد و گاه به آن منطق صوری (منطق نمادی) میگویند. این نام را جوزپه پئانو ریاضیدان ایتالیائی بر این رشته علمی گذاشت . پیشتر لایب نیتز و لامبرت کوشش هائی در این خصوص کرده بودند.
در اواخر قرن نوزدهم میلادی ، با کارهای آگوستوس دی مورگان، جرج بول، گوتلوپ فرگه، برتراند راسل، داوید هیلبرت و دیگران این علم به پیشرفت قابل ملاحظهای دست یافت . منطق امروز در ریاضیات ، شکل کامل تری از منطق در فلسفه است که اساس خود را با نظریهٔ مجموعهها به اشتراک دارد.
این رشته در ایران جایگاه مناسبی ندارد.
6-نظریه اعداد(Number Theory)
شاخهای از ریاضیات محض است که در مورد خواص اعداد صحیح بحث میکند.در نظریه مقدماتی اعداد، اعداد صحیح را بی استفاده از روشهای بهکار رفته در سایر شاخههای ریاضی بررسی میکنند. در نظریه تحلیلی اعداد از حسابان و آنالیز مختلط برای بررسی سؤالاتی در مورد اعداد صحیح استفاه میشود. در نظریه جبری اعداد، مفهوم عدد به اعداد جبری، که همان ریشههای چند جملهایهائی با ضریب گویا هستند، گسترش مییابد. نظریه هندسی اعداد (که قبلا به آن هندسه اعداد میگفتند) جنبههایی از هندسه را به نظریه اعداد پیوند میدهد. نظریه ترکیبیاتی اعداد به مسائلی در نظریه اعداد میپردازد که با روشهای ترکیبیاتی بررسی میشوند. نظریه محاسباتی اعداد به الگوریتمهای مربوط به نظریه اعداد میپردازد.
متخصص در این گرایش نیز در ایران کم میباشد.
7- سيستم هاي ديناميكي (Dynamical System)
گرایش سیستمهای دینامیکی یکی از گرایش های ریاضیآت محض و کاربردی است.
در گرایش محض، هندسه سیستم های دینامیکی بطور تحلیلی مورد بحث قرار میگیرند.از جمله مباحث بسیار زیبای سیستمهای دینامیکی میتوان به نظریه آشوب وتحلیل تونل زمان اشاره کرد.
همچنین به عنوان زیرشاخه ای از توپولوژی و هندسه میتوان به گروه های توپولوژیک اشاره کرد که دروازه ای برای ورود به مباحثی چون آنالیز هارمونیک و گروه وجبر لی میباشد.
۱-آنالیز عددی(Numerial Analysis)
محاسبات عددی یا آنالیز عددی به تنظیم، مطالعه، و اعمال شیوه های تقریبی محاسباتی برای حلّ آن دسته از مسائل ریاضیات پیوسته (در مقابل ریاضیات گسسته) میپردازد که با روشهای تحلیلی و دقیق قابل حلّ نیستند. برخی از مسائل مورد نظر محاسبات عددی به طور مستقیم از حسابان می آید. جبر خطی عددی (بر روی میدانهای حقیقی یا مختلط) و نیز حلّ معادلات دیفرانسیل خطّی و غیر خطّی مربوط به فیزیک و مهندسی از جملهٔ زمینه های دیگر برای کاربرد محاسبات عددی است.
2- تحقیق در عملیات (Operations Research به اختصار OR)
شاخهای میان رشته ای از ریاضیات است که برای یافتن نقطه بهینه در مسائل بهینه سازی، از گرایشهایی مانند برنامه ریزی ریاضی، آمار و طراحی الگوریتمها استفاده می کند. یافتن نقطه بهینه براساس نوع مسئله مفاهیم مختلف دارد و در تصمیم سازیها استفاده میشود. مسائل تحقیق در عملیات بر بیشینهسازی (ماکزیممسازی) -مانند سود، سرعت خط تولید، تولید زراعی بیشتر، پهنای باند بیشتر و غیره- یا کمینهسازی (مینیممسازی) -مانند هزینه کمتر و کاهش ریسک و غیره، با استفاده از یک یا چند قید تمرکز دارند. ایدهٔ اصلی تحقیق در عملیات یافتن بهترین پاسخ برای مسائل پیچیدهای است که با زبان ریاضیمدلسازی شدهاند که باعث بهبود یا بهینهسازی عملکرد یک سامانه میشوند.
۳-نظریه گراف و ترکیبیات(Graph Theory and Combinatorics)
نظريه گراف ضمن اينكه يكي از بخش هاي با قدمت دانش رياضي محسوب مي گردد، يكي از پركاربردترين شاخه هاي رياضي در ساير علوم نيز مي باشد. كاربردهاي آن در بيولوژي، شيمي، فناوري نانو، تحقيق در عمليات و علوم مهندسي بسيار فراوان مي باشد. لازم به ذکر است که این گرایش در اغلب کشورهای خارجی زیر مجموعه ریاضی محض محسوب می شود.
4-متروید(Matroid)
مترویدها اولین بار توسط ویتنی در سال 1935 در تلاش برای فراهم آوردن یک رفتار مجرد یکسان از وابستگی در جبر خطی و نظریه گراف معرفی شدند. نام متروید ساختاری مربوط به یک ماتریس را القا میکند. تعریف ویتنی تنوع شگفتانگیز از ساختارهای ترکیبیاتی را در برداشت. از این گذشته مترویدها به طور طبیعی در بهینهسازی ترکیبیاتی پدیدار میشوند، زیرا آنها دقیقا همان ساختارهای ترکیبیاتی هستند که الگوریتم حریصانه برای آن به نتیجه میرسد.
رشته مترويد در ایران، اولين بار در سال 1383 در دانشگاه اروميه ارائه شد.
5- معادلات ديفرانسيل (Differential Equations)
نظريه معادلات ديفرانسيل يك بخش بنيادي از دانش رياضي بوده و ضمن داشتن قدمت كاربردهاي بيشماري در فيزيك و مهندسي و پزشكي دارو به يقين مي توان گفت يكي از پايه هاي اصلي اين علوم معادلات ديفرانسيل است. برگزاري كنفرانس ها و صرف بودجه هاي هنگفت پژوهشي خود دليل نقش كليدي و كاربردي اين رشته در پيشرفت علمي و تكنولوژي مي باشد.
6-نظریه رمز و کریپتوگرافی(Cryptography)
دانشی است که به بررسی و شناختِ اصول و روشهای انتقال یا ذخیرهٔ اطلاعات به صورت امن (حتی اگر مسیر انتقال اطلاعات و کانالهای ارتباطی یا محل ذخیره اطلاعات ناامن باشند) میپردازد.
متخصص در این رشته بسیار کم است .
7- ریاضیات مالی(Financial Mathematics)
ریاضیات مالی شیرین وجذاب است چون تکنیکها و شاخههای محض ریاضیات، نظریه اندازه احتمال را با کاربردهای تجربی که روی زندگی روزانه مردم تأثیر دارد ترکیب میکند. ریاضیات مالی مهیج است چون با بکاربردن ریاضیات پیشرفته، نظریههای اساسی و بنیادی اقتصاد و مالی را ترقی میدهد. برای درک کردن تأثیر این کار، لازم است بدانیم بسیاری از نظریه مالی مدرن، از جمله جایزه نوبل، بر اساس فرضهای تحمیل شده هستند، نه به این خاطر که آنها پدیدههای مشاهده شده را منعکس میکنند بلکه به این خاطر که بصورت ریاضی درآوردهشدهاند. همانطور که فیزیک انگیزه ریاضیات جدید شده است، ریاضیات مالی ریاضیات جدید را به سمت مدل کردن مشاهدات اقتصادی پیش میبرد.
تحقیق و تدریس در این رشته در ایران کم میباشد. اما مطمئنا در آینده جز رشتههای پرطرفدار محسوب خواهد گردید.
8- ریاضیات صنعتی(Industrial Mathematics)
همانگونه که از نام این رشته پیداست کاربرد ریاضی در علوم فنی بررسی می شود. در ایران مقطع دکتری این رشته وحود ندارد اما دوره کارشناسی ارشد این گرایش برگزار می شود.
9-بهینه سازی(Mathematical Optimization)
شاخهای از ریاضیات است که در آن سعی میشود که ماکزیمم و مینیمم یک سیستم معادلات را با توجه به یکسری الزامات، به دست آورد.
10-منطق فازی (Fuzzy logic)
اولین بار در پی تنظیم نظریهٔ مجموعههای فازی به وسیلهٔ پروفسور لطفی زاده (۱۹۶۵ م) در صحنهٔ محاسبات نو ظاهر شد.
دانش مورد نیاز برای بسیاری از مسائل مورد مطالعه به دو صورت متمایز ظاهر میشود:
۱. دانش عینی مثل مدلها، و معادلات، و فورمولهای ریاضی که از پیش تنظیم شده و برای حل و فصل مسائل معمولی فیزیک، شیمی، یا مهندسی مورد استفاده قرار میگیرد.
۲. دانش شخصی مثل دانستنیهایی که تا حدودی قابل توصیف و بیان زبانشناختی بوده، ولی، امکان کمی کردن آنها با کمک ریاضیات سنتی معمولاً وجود ندارد.
از آن جا که در عمل هر دو نوع دانش مورد نیاز است منطق فازی میکوشد آنها را به صورتی منظم، منطقی، و ریاضیاتی بایکدیگر هماهنگ گرداند.
11- سيستم هاي ديناميكي (Dynamical System)
گرایش سیستمهای دینامیکی یکی از گرایش های ریاضیآت محض و کاربردی است. در گرایش کاربردی، هدف آن مطالعه و بررسی سیستم هایی است که با گذر زمان تغییر می کنند البته هم سیستم های زمان گسسته و هم زمان پیوسته.نظريه سيستم هاي ديناميكي و كنترل به بررسي رفتار كيفي پديده هاي طبيعي و مصنوعي و كنترل آن مي پردازد. اين پديده ها در حوزه وسيعي از بيولوژي و افتصاد گرفته تا تكنولوژي فضايي گسترده شده اند. ابزار رياضي مورد استفاده نيز طيف وسيعي از دانش رياضي را دربر مي گيرد.
ب) ریاضیات محض:
1- جبر(Algebra)
جبر مجرّد شاخهایست از ریاضیات که به بررسی ساختارهای جبری مثل گروه، حلقه، و میدان میپردازد. آغاز تعریف رسمی این گونه ساختارها به قرن نوزدهم (م) باز میگردد.
اصطلاح «جبر مجرّد» در برابر «جبر مقدّماتی »ا «جبر دبیرستانی» بهکار میرود. در حدود نیمه اوّل قرن بیستم این رشته را «جبر مدرن» مینامیدند.
جبر مجرد مقدماتی،اشیاء و اعمال ریاضی را،فارغ از ماهیت آنها بررسی میکند. اعداد، توابع، ماتریسها،از عناصر آن و اعمال دوتایی ضرب،ترکیب توابع و ... از اعمال آن به شمار میآیند.
دسته بندی گروهها و حلقهها، مدولهااز موضوعات اساسی این شاخه به حساب میآیند.برخی شاخههای هندسی با جبر مجرد ارتباط پیدا میکنند.
جبر مقدماتی بهمراه جبر مجرد و جبر خطی سه شاخهٔ اصلی دستگاه جبر را تشکیل میدهند.از دروس اختصاصي اين رشته جبر3، جبرحلقهها، جبر جابجایی، جبر همولوژی،جبر ناجابجايي، نظریه نمایش و ... است. تحقيقات مربوط به اين رشته کاربردهاي جالب توجهي در زمينه هاي پزشکي، شيمي اتم و کيهان شناسي دارد.
این رشته دارای چندین زیرشاخه مهم به شرح زیر است:
جبرجابجایی
جبر ناجابجایی
نظریه گروهها
نظریه حلقه ها و مدولها
جبر ترکیبیاتی
هندسه جبری
مقطع کارشناسی ارشد این رشته در اکثر دانشگاههای کشور که دانشجوی ارشد ریاضی دارند تدریس میشود.
2- آنالیزریاضی(Mathematical Analysis)
آنالیز نام عمومی آن بخشهائی از ریاضیات است که با مفاهیم حد و همگرایی مربوطاند و در آنها موضوعاتی مثل پیوستگی و انتگرالگیری و مشتقپذیری و توابع غیرجبری بررسی میشود. این موضوعات را معمولاً در عرصه اعداد حقیقی یا اعداد مختلط و توابع مربوط به آنها بحث میکنند ولی میتوان آنها را در هر فضائی از موجودات ریاضی که در آن مفهوم "نزدیکی" (فضای توپولوژیک) یا "فاصله" (فضای متریک) وجود دارد بهکار برد. آنالیز ریاضی از کوششهای مربوط به دقیق کردن مبانی و تعریفهای حسابان سر برآورده است.
انالیز ریاضی در واقع به نقاط استثنایی ریاضیات میپردازد . کلمه انالیز به همین معنی [: نقاط استثنایی] است
از دروس اختصاصي اين رشته در مقطع کارشناسي ارشد آناليز تابعي، آناليز هارمونيک، آناليز حقيقي و... است. این رشته دارای چندین زیرشاخه به شرح زیر است:
آنالیز حقیقی
آنالیز مختلط
آنالیز عددی
آنالیز تابعی
آنالیز هارمونیک
آنالیز غیراستاندارد
بیشتر عنوان تز دانشجو مشخص کننده رشته تخصصی دانشجو است. عموماً نتايج تحقيقات اين رشته براي علوم مختلف قابل استفاده است. برخي دانشگاهها هنگام انتخاب رشته دانشجويان رابه تفکيک گرايش انتخاب مي کنند. اما برخي ديگر مانند گرايشهاي مقطع کارشناسي در دو گرايش محض و کاربردي دانشجو ميپذيرند و مثلاً دانشجوي گرايش محض در هر يک از گرايشهاي جبر، آناليز و... ميتواند ادامه تحصيل دهد.
مقطع کارشناسی ارشد این رشته در اکثر دانشگاههای کشور که دانشجوی ارشد ریاضی دارند تدریس میشود.
3- هندسه(Geometry)
هِندِسه مطالعه انواع روابط طولی و اشکال و خصوصیات آنها است. این دانش همراه با حساب یکی از دو شاخه قدیمی ریاضیات است.
واژه هندسه عربی شده واژه " اندازه" در فارسی است. در زبان انگلیسی به آن geometry و در زبان فرانسه به آن géométrie میگویند که هردو از γεωμετρία) گئومتریا) در زبان یونانی آمده که به معنای اندازهگیری زمین است.
کلاسه بندی هندسه
1-هنـدسه مقـدماتی به دو قسمت تقسیـم میگردد:
هنـدسه مسطحه
هندسه فضائی
در هندسه مسطح، اشکالی مورد مطالعه قرار میگیرند که فقط دو بعد دارند، هندسه فضایی، مطالعه اشکال هندسی سه بعدی است. این بخش از هندسه در مورد اشکال سه بعدی چون مکعبها ،استوانه ها، مخروط ها، کرهها و غیره است.
2-در هندسه مدرن شاخههای زیر مورد مطالعه قرار میگیرند:
هندسه تحلیلی
هندسه برداری
هندسه دیفرانسیل
هندسه جبری
هندسه محاسباتی
هندسه اعداد صحیح
هندسه اقلیدسی
هندسه نااقلیدسی
هندسه تصویری
هندسه ریمانی
هندسه ناجابجایی
هندسه هذلولوی
صاحب نظر و متخصص در این گرایش در ایران کم میباشد.
4-توپولوژی(Topology)
توپولوژی شاخهای از ریاضیات است که به بررسی فضاهای توپولوژیکی میپردازد. توپولوژی یکی از شاخههای نسبتاً جوان ریاضیات است.
نام این رشته از واژههای یونانی توپو (Topo) بهمعنی مکان و (Logos) بهمعناي شناخت گرفته شده است. بنابراين، توپولوژی یعنی مکانشناسی.
فرهنگستان زبان و ادب فارسی برای توپولوژی واژهای معادل پیشنهاد نکرده است و همان توپولوژی را در نظر گرفته است.
توپولوژی یکی از زمینههای مهم ریاضیات است که از پیشرفت مفاهیم هندسی و تئوری مجموعهها مانند فضا، بعد، اشکال، تبدیلات و... بوجود آمدهاست.
لغت توپولوژی هم به معنای زمینهای در ریاضیات است و هم برای خانوادهای از مجموعهها که دارای خصوصیات مخصوصی که برای تعریف فضای توپولوژیک، که شی بنیادین توپولوژی است، استفاده میشود.
توپولوژی دارای زیرشاخههای زیادی است. بنیادی ترین و قدیمی ترین زیرشاخه، توپولوژی نقطه-مجموعهاست که بنیادهای توپولوژی بر آن بنا شدهاست و به مطالعه در زمینههای فشردگی، پیوستگی و اتصال میپردازد. یکی دیگر از زیرشاخههای توپولوژی، توپولوژی جبری است که سعی در محاسبه درجه اتصال دارد، توپولوژی جبری در حقیقت بکار بردن روشهای جبری برای دریافت اطلاعات توپولوژیک است. همچنین توپولوژی زیرشاخههایی مانند توپولوژی دیفرانسیل، توپولوژی گراف و توپولوژی ابعاد کم را نیز داراست.
5- منطق ریاضی(Mathematical Logic)
منطق ریاضی ، شاخهای از ریاضیات است که به ارتباط ریاضی و منطق می پردازد و گاه به آن منطق صوری (منطق نمادی) میگویند. این نام را جوزپه پئانو ریاضیدان ایتالیائی بر این رشته علمی گذاشت . پیشتر لایب نیتز و لامبرت کوشش هائی در این خصوص کرده بودند.
در اواخر قرن نوزدهم میلادی ، با کارهای آگوستوس دی مورگان، جرج بول، گوتلوپ فرگه، برتراند راسل، داوید هیلبرت و دیگران این علم به پیشرفت قابل ملاحظهای دست یافت . منطق امروز در ریاضیات ، شکل کامل تری از منطق در فلسفه است که اساس خود را با نظریهٔ مجموعهها به اشتراک دارد.
این رشته در ایران جایگاه مناسبی ندارد.
6-نظریه اعداد(Number Theory)
شاخهای از ریاضیات محض است که در مورد خواص اعداد صحیح بحث میکند.در نظریه مقدماتی اعداد، اعداد صحیح را بی استفاده از روشهای بهکار رفته در سایر شاخههای ریاضی بررسی میکنند. در نظریه تحلیلی اعداد از حسابان و آنالیز مختلط برای بررسی سؤالاتی در مورد اعداد صحیح استفاه میشود. در نظریه جبری اعداد، مفهوم عدد به اعداد جبری، که همان ریشههای چند جملهایهائی با ضریب گویا هستند، گسترش مییابد. نظریه هندسی اعداد (که قبلا به آن هندسه اعداد میگفتند) جنبههایی از هندسه را به نظریه اعداد پیوند میدهد. نظریه ترکیبیاتی اعداد به مسائلی در نظریه اعداد میپردازد که با روشهای ترکیبیاتی بررسی میشوند. نظریه محاسباتی اعداد به الگوریتمهای مربوط به نظریه اعداد میپردازد.
متخصص در این گرایش نیز در ایران کم میباشد.
7- سيستم هاي ديناميكي (Dynamical System)
گرایش سیستمهای دینامیکی یکی از گرایش های ریاضیآت محض و کاربردی است.
در گرایش محض، هندسه سیستم های دینامیکی بطور تحلیلی مورد بحث قرار میگیرند.از جمله مباحث بسیار زیبای سیستمهای دینامیکی میتوان به نظریه آشوب وتحلیل تونل زمان اشاره کرد.
همچنین به عنوان زیرشاخه ای از توپولوژی و هندسه میتوان به گروه های توپولوژیک اشاره کرد که دروازه ای برای ورود به مباحثی چون آنالیز هارمونیک و گروه وجبر لی میباشد.