PDA

توجه ! این یک نسخه آرشیو شده میباشد و در این حالت شما عکسی را مشاهده نمیکنید برای مشاهده کامل متن و عکسها بر روی لینک مقابل کلیک کنید : معرفی نوار موبیوس چیست؟



نابغه
19th July 2009, 03:23 PM
نوار موبیوس



http://daneshnameh.roshd.ir/mavara/show_image.php?id=21453

در ریاضیات نوار موبیس از به به هم چسباندن دو انتهای یک نوار بطوریکه یک نیم چرخش در نوار داده باشیم بدست می آید.

نوار موبیوس در حین سادگی از نظر ساخت به صورت عملی خواص حیرت آوری دارد ، این نوار مستقلا و به طور جداگانه توسط دو ریاضیدان آلمانی به نامهای August Ferdinand Möbius و Johann Benedict در سال 1858 کشف و به ثبت رسید.

خواص نوار موبیوس:

نوار موبیوس مثالی از یک سطح جهت ناپذیر در ریاضیات است ،یعنی نوار موبیوس سطحی است که یک رو دارد. از خواص حیرت آور این نوار آنست که این نوار فقط یک مرز دارد.
در ابتدا مرز یک ناحیه در فضا را تعریف می کنیم :

مرز یک ناحیه همان طور که از تعریفش پیداست خط جدا کننده آن ناحیه از ناحیه دیگر می باشد در ریاضیات برای یک سطح سه مفهوم تعریف میشود.

1-نقطه داخلی : نقطه ای که بتوان آن را داخل یک دایره روی سطح محصور کرد .
2- نقطه خارجی:نقطه ای است که بتوانیم دایره حول آن رسم کنیم که متعلق به آن سطح نباشد.
3-نقطه مرزی نقطه است که هر دایره ای حول آن رسم شود قسمتی از آن متعلق به سطح و قسمت دیگر آن متعلق به خارج آن سطح باشد.

با این تعریف نوار موبیوس فقط یک مرز دارد.یعنی با یکبار حرکت در کرانه های انتهای نوار تمام مرز آن را میتوانیم طی کنیم.

برای آزمایش میتوانید این کار را با یک دایره ای که از وسط سوراخ شده است تکرار کنید،در این حالت برای پیمودن مرزهای این سطح باید از روی دو دایره عبور کنیم.
نوار موبیوس خواص غیر منتظره دیگری نیز دارد ،به عنوان مثال هر گاه بخواهیم این نوار را در امتدادد طولش ببریم به جای اینکه دو نوار بدست نیاوریم یک نوار بندتر و با دو چرخش بدست میاوریم.
همچنیین با تکرار دوباره این کار دو نوار موبیوس در هم پیچ خورده بدست می آید.با ادامه این کار یعنی بریدن پیاپی نوار و در انتهای کار تصاویر غیر منتظره ای ای ایجاد میشود که به حلقه های پارادرومویک(paradromic rings) موسومند.
همچنین اگر این نوار را از یک سوم عرض نوار ببریم در این حالت دو نوار موبیوس در هم گره شده با طولهای متفاوت بدست می آوریم.

تمامی این کارها بطور شهودی قابل اجرا هستند.


هندسه و توپولوژی :



http://daneshnameh.roshd.ir/mavara/show_image.php?id=21454

؛ شادی ؛
1st August 2014, 10:04 PM
نوار موبـیوس
بخش دوم: مفهوم مرزِ ناحیه، خواص و کاربرد نوار موبیوس



http://www.physlink.com/Education/AskExperts/Images/ae401b.jpg

◄ تعریف مرز یک ناحیه در فضا:


مرزِ یک ناحیه، خط جدا کنندة آن ناحیه از ناحیة دیگر است. در ریاضیات برای یک سطح سه مفهوم تعریف می شود:

۱- نقطة داخلی: نقطه ای که بتوان آن را داخل یک دایره روی سطح محصور کرد.
۲- نقطة خارجی: نقطه ای است که بتوانیم دایره ای حول آن رسم کنیم که متعلق به آن سطح نباشد.
۳- نقطة مرزی: نقطه ای است که هر دایره ای حول آن رسم شود، قسمتی از آن متعلق به سطح و قسمت دیگر آن متعلق به خارج آن سطح باشد.

با این تعریف نوار موبیوس فقط یک مرز دارد. یعنی با یک بار حرکت در کرانه های انتهای نوار تمام مرز آن را می توانیم طی کنیم.


◄ نکات جالب درباره نوار موبیوس

اگر با یک خودکار بر روی نوار موبیوس خطی در طول نوار بکشیم و ادامه دهیم این خط دوباره به نقطة شروع باز می‌گردد و هر دو طرف نوار خط کشیده می‌شود! در واقع، نوار موبیوس مثالی از یک رویة بدون جهت (جهت ناپذیر) است. یعنی نوار موبیوس سطحی است که یک رو دارد. از خواص حیرت آور این نوار آن است که این نوار فقط یک مرز دارد.



http://curvebank.calstatela.edu/moebius/moebius2.gif



نوار موبیوس خواص غیرمنتظرة دیگری نیز دارد؛ برای نمونه، هرگاه بخواهیم این نوار را در امتداد طولش بِـبُریم به جای این که دو نوار به دست بیاوریم، یک نوار بلندتر و با دو چرخش به دست می آوریم! همچنین با تکرار دوبارة این کار دو نوار موبیوس در هم پیچ خورده به دست می‌آید. با ادامة این کار یعنی بریدن پیاپی نوار، در انتهای کار تصاویر غیرمنتظره‌ای ایجاد می‌شود که به حلقه‌های پارادرومیک (paradromic rings) موسومند. همچنین اگر این نوار را از یک سوم عرض نوار ببریم، دو نوارِ موبیوس در هم گره شده با طولهای متفاوت به دست خواهیم آورد. تمامی این کارها به آسانی قابل اجراء هستند.



http://www.lituraterre.org/mobius_anime.gif



کاربرد خواص نوار موبـیوس در معماری

خاصیت موبیوسی: خاصیتی است که رابطة بین «درون» و «بیرون» را وارونه می‌کند. یعنی هر نقطه از یک سطح موبیوسی در عین حال که درون است، بیرون نیز می‌باشد! بنابراین در یک تغییر پیوسته، نوعی دگرگونی در ماهیت یک فضا صورت می‌گیرد. در واقع در این حالت فضا خاصیت دو گانه اما پیوسته پیدا می‌کند.
خاصیت موبیوس که گذر از درون به برون و از برون به درون را ممکن می‌کند، کمابیش توانسته است بر فراز شکاف حاصل از دوگانگی (ثنویت) پلی بزند (شایگان،۱۳۸٠). بنابراین، فضای ِمیان «برون و درون»، «پیوستگی» و «تکرار» با یک تعریف ریاضی به یک سطح هندسی تبدیل می‌شود. سطحی که بر آن در هر لحظه ای هم داخل و هم خارج فضا هستیم. این ویژگی در طراحی معماری مورد توجه قرار گرفته است.


فرشیدموسوی در پروژه‌ای به نام خانة مجازی (Virtual House) از خاصیت نوار موبیوس برای طراحی استفاده می‌کند. او با این ساختار، سطح توپولوژیکی به وجود می‌آورد که در آن هر اتاق با اتاق دیگر ترکیب می‌شود تا نواری دو طرفه و دو منظوره را درست کند (شکلهای ١ و ۲). در آن پروژه تـضاد بین داخل-خارج، جلو-عقب، پائین-بالا و دیگر مفاهیم در یک سکونتـگاه مورد پرسش قرار می‌گیرد و ارتباطی خاص میان این مفاهیم به وجود می‌آید.





http://report.aruna.ir/pic/halazoon05.jpg





http://report.aruna.ir/pic/halazoon06.jpg




ساختار هندسی نوار موبیوس، «درون و بیرون» با «داخل و خارج» را تلفیق می‌کند و فضای سومی با کیفیتی جدید به وجود می‌آورد. این فضای سوم، فضایی است که «همزمانی»، «تبدیل» و «تکرار» در میان پدیده ها در آن رخ می‌دهد.

؛ شادی ؛
1st August 2014, 10:07 PM
http://www.ihoosh.ir/images/UserFiles/f5235/Math/Misc/ihoosh_mobius_5.jpg




http://www.ihoosh.ir/images/UserFiles/f5235/Math/Misc/ihoosh_mobius_6.jpg

منبع :دانشنامه فارسی ویکیپدیا - دانشنامه رشد

medesa
27th December 2014, 03:35 PM
http://www.azarmath.com/pic/images/147_arazweb_3dwallpapers_177_.jpg

استفاده از تمامی مطالب سایت تنها با ذکر منبع آن به نام سایت علمی نخبگان جوان و ذکر آدرس سایت مجاز است

استفاده از نام و برند نخبگان جوان به هر نحو توسط سایر سایت ها ممنوع بوده و پیگرد قانونی دارد