م.محسن
3rd May 2013, 03:53 PM
کنت اپل (Kenneth Appel) یکی از اولین ریاضیدانانی که با استفاده از رایانه موفق به اثبات یک قضیه مشهور ریاضی شد، در سن 80 سالگی درگذشت.
به گزارش ایسنا، اپل در سال 1979، قضیه چهار رنگ را اثبات کرد. بر اساس این قضیه، میتوان فقط با استفاده از چهار رنگ و بدون مرزبندی قلمروها با رنگ یکسان، یک نقشه را رنگآمیزی کرد.
این قضیه نخستین بار در سال 1852 توسط یک نقشهکش انگلیسی مطرح شد و گرچه حقیقیبودن آن بدیهی به نظر میرسید، اما دههها ذهن ریاضیدانان را به خود مشغول کرده بود.
برای اثبات آن، اپل و همکارانش ابتدا نشان دادند که تمامی نقشههای ممکن را میتوان به مجموعهای از یک هزار و 936 شکل کاهش داد. آنها سپس برای ثابتکردن این قضیه، تمامی این اشکال را با استفاده از ابررایانه IBM آزمایش کردند.
در آن زمان این ابررایانه یک اتاق کامل را اشغال میکرد، اما قدرت آن از یک گوشیهوشمند امروزی کمتر بود.
استفاده از ابرکامپیوتر برای اثبات یک قضیه ریاضی در آن زمان موفقیتی بزرگ به شمار میرفت.
نیویورک تایمز تاریخ مرگ این ریاضیدانان را 19 آوریل اعلام کرده است.
منبع (http://www.tabnak.ir/fa/news/316981/%D9%85%D8%B1%DA%AF-%DB%8C%DA%A9-%D8%B1%DB%8C%D8%A7%D8%B6%DB%8C%D8%AF%D8%A7%D9%86-%D9%85%D8%B4%D9%87%D9%88%D8%B1)
به گزارش ایسنا، اپل در سال 1979، قضیه چهار رنگ را اثبات کرد. بر اساس این قضیه، میتوان فقط با استفاده از چهار رنگ و بدون مرزبندی قلمروها با رنگ یکسان، یک نقشه را رنگآمیزی کرد.
این قضیه نخستین بار در سال 1852 توسط یک نقشهکش انگلیسی مطرح شد و گرچه حقیقیبودن آن بدیهی به نظر میرسید، اما دههها ذهن ریاضیدانان را به خود مشغول کرده بود.
برای اثبات آن، اپل و همکارانش ابتدا نشان دادند که تمامی نقشههای ممکن را میتوان به مجموعهای از یک هزار و 936 شکل کاهش داد. آنها سپس برای ثابتکردن این قضیه، تمامی این اشکال را با استفاده از ابررایانه IBM آزمایش کردند.
در آن زمان این ابررایانه یک اتاق کامل را اشغال میکرد، اما قدرت آن از یک گوشیهوشمند امروزی کمتر بود.
استفاده از ابرکامپیوتر برای اثبات یک قضیه ریاضی در آن زمان موفقیتی بزرگ به شمار میرفت.
نیویورک تایمز تاریخ مرگ این ریاضیدانان را 19 آوریل اعلام کرده است.
منبع (http://www.tabnak.ir/fa/news/316981/%D9%85%D8%B1%DA%AF-%DB%8C%DA%A9-%D8%B1%DB%8C%D8%A7%D8%B6%DB%8C%D8%AF%D8%A7%D9%86-%D9%85%D8%B4%D9%87%D9%88%D8%B1)