وحید 0319
17th August 2012, 01:32 AM
آشنايي با سراميک
سراميک مشتق از کلمه keramos يوناني است که به معني سفالينه يا شئي پخته شده است. در واقع منشا پيدايش اين علم همان سفالينههاي ساخته شده توسط انسانهاي اوليه هستند. در واقع قبل از کشف و استفاده فلزات، بشر از گلهاي رس به علت وفور و فراواني آنها و همچنين شکلگيري بسيار خوب آنها در در صورت مخلوط شدن با آب و درجه حرارت نسبتاً پايين پخت آنها استفاده ميکرد. آلومينوسيليکاتها که خاکهاي رسي خود آنها به حساب ميآيند، از عناصر آلومينيوم، سيليسم و اکسيژن ساخته ميشوند که اين سه عنصر بر روي هم حدود 85 درصد پوسته جامد کرة زمين را تشکيل ميدهند. اين سه عنصر فراوانترين عناصر پوسته زمين هستند.
صنعت ساخت سفالينهها در 4000 سال قبل از ميلاد مسيح پيشرفت زيادي کرده بود. اکنون، سراميک را به طور کلي به عنوان هنر و علم ساختن و به کار بردن اشياء جامدي که اجزاء تشکيلدهنده اصلي و عمدة آنها مواد غيرآلي و غيرفلزي ميباشند، تعريف ميکنيم و بررسي ساختمان و خواص اينگونه مواد نيز جزء اين علم است.
فرآوردههاي سراميکي:
اين فرآوردهها را ميتوان به دو گروه عمده تقسيم کرد:
1) سراميکهاي سنتي: اساساً مواد تشکيلدهنده صنايع سيليکاتي يعني محصولات رسي، سيمان و شيشههاي سيليکاتي و چينيها هستند.
فرآوردههاي شيشهاي بزرگترين بخش صنعت سراميک محسوب ميشوند. ساير بخشها به ترتيب اولويت عبارتند از:
محصولات سيماني داخلي ( مانند سيمانهاي هيدورليکي که در صنايع ساختماني به مصرف ميرسند.)
سفيدآلات، ( Whiteware): شامل سفالينهها، چينيها و ترکيبات چيني مانند هستند.
لعابهاي چيني
محصولات رسي ساختماني: که بهطور عمده از آجرها و کاشيها تشکيل ميشوند.
ديرگدازها
صنعت سازنده مواد ساينده: عمدتاً سايندههاي سيلسيم کاربيدي و آلومينائي
2) سراميکهاي نوين: اين دسته براي جوابگوئي به نيازهاي مخصوص مانند مقاومت حرارتي بيشتر، خواص مکانيکي بهتر و خواص الکتريکي ويژه و مقاومت شيميايي افزونتر به وجود آوردهاند.
گروهي از انواع اين نوع سراميکها عبارتنداز:
سراميکهاي اکسيدي خالص با ساختماني يکنواخت: به عنوان اجزاء الکتريکي با ديرگداز بکار ميروند. اکسيدهايي مانند آلومينا (Al2O3)، زيرکونيا (ZrO2)، توريا (ThO2)، بريليا (BeO) و منيزيا (MgO) بيشتر مورد استفاده قرار ميگيرند.
سراميکهاي الکترواپتيکي (الکترونيکي– نوري): مانند نايوبيت ليتيم ( LiNbO3) و تيتانات که اينها محيطي را فراهم ميآورند که بوسيله آن علائم الکتريکي به نوري تبديل ميشوند.
سراميکهاي مغناطيسي: اين مواد اساس واحدهاي حافظه مغناطيسي را در کامپيوترهاي بزرگ تشکيل ميدهند.
تک بلورها
سراميکهاي نيتريدي: مانند نيتريد آلومينيوم، نيتريد سيلسيم و نيتريد بور که بسيار ديرگداز و استحکام خوبي در درجه حرارتهاي بالا دارند.
لعابهاي سراميکي: به عنوان پوشش فلز آلومينيوم توليد ميشوند.
مواد مرکب کامپوزيت (فلزي – سراميکي): هر دو فاز فلزي و سراميکي در اين مواد وجود دارد.
کاربيدهاي سراميکي: به عنوان ساينده مورد استفاده قرار ميگيرند.
بوريدهاي سراميکي: از نظر استحکام و مقاومت اکسيده شدن در درجه حرارتهاي بالا حائز اهميت هستند.
سراميکهاي فروالکتريکي: داراي ثابت ديالکتريک بسيار بالائي بوده و بهعنوان اجزاء الکترونيکي در خازنها کاربرد دارد.
شيشه سراميکها
علم سراميک:
به طور کلي علم سراميک را ميتوان به دو شاخه سراميک فيزيکي و سراميک صنعتي تقسيم کرد.
سراميک فيزيکي درباره ساختمان مواد سراميکي و خواص آنها بحث ميکند. در اين شاخه ساختمان اتم، اتصالات بين اتمها، ساختمانهاي بلوري، ساختمان شيشه، معايب ساختماني، استحالههاي فازي، رشد دانهها، تبلور مجدد و مباحثي نظير آنها مورد بحث قرار ميگيرد. علاوه بر اين خواص الکتريکي، مغناطيسي، نوري، حرارتي و مکانيکي سراميکها هم مورد بحث قرار ميگيرند.
در سراميک صنعتي از تکنولوژي ساخت سراميکها صحبت ميشود.اصولاً مراحل ساخت هر جسم سراميکي به صورت زير است:
انتخاب مواد اوليه و تغليظ و تخليص آن.
آمادهسازي مواد اوليه (خردکردن- دانهبندي- مخلوط کردن )
شکل دادن
خشک کردن
پختن (زينتر کردن)
http://www.architects.ir/architects/file/talavera.jpg
خواص سرامیک ها ( بيوسراميك ها)
مواد سرامیکی خواص ویژه ای از خود نشان می دهند به طوری که این امر موجب می گردد که جایگزین دیگری با مواد دیگر نداشته باشد و بنابراین نقش ویژه ای در تهیه انواع بیشماری از ادوات و تجهیزات بازی می کند. برای ایجاد یک خواص خوب و مناسب ودر نتیجه بکارگیری صحیح مواد سرامیکی دانستن اطلاعات درمورد رابطه بین خواص و ریزساختار مواد سرامیکی ضروری است. ریزساختار مواد بستگی زیادی به فرآیند تولید و روش تهیه دارد. سرامیک های پیشرفته امروز کاربردهای بسیار فراوانی دارند و امروزه سعی بر تولید مواد سرامیکی است که به شکل کامل تولید شده و بعد از تولید نیاز به ماشین کاری و در نتیجه تحمیل هزینه اضافی به سیستم حذف گردد.
مواد جدیدی که امروزه اهمیت ویژه ای برای تحقیق و توسعه این مواد در نظر گرفته می شوند در زمینه سرامیک به شرح زیر می باشند :
بیوسرامیک ها که تاثیر به سزایی در رشد صنعت پزشکی و بهبود وضعیت سلامتی جوامع انسانی داشته اند، مواد ساینده نظیر ابزار برش و چرخ های ساینده که کاربری آن در صنایع کاربردی فلزات و ... است. سرامیک های سخت و بسیار سخت (hard and Super hard ceramics ) موادی هستند که مطالعه بر روی آن ها بسیار پر اهمیت و البته هزینه بر است.
روش های مطالعه رفتار مواد در دماهای بالا، فیلترها، خوردگی مواد نیز نیاز به تقویت دارد. تجزیه SO و NO در فرآیند احتراق محصولات سرامیکی در دماهایی پائین از طریق احیای کاتالیتیک (Catalytic reduction ) مورد بررسی قرار گیرد.
اجزای سرامیکی برای هایپر فیلتراسیون (Hyper filtration ) گازی در اندازه مولکولی در مایع آب مناسب هستند. الکتروسرامیک ها کاربردهای بسیار متنوعی داشته و شامل سرامیک های با هدایت یونی (کاربرد در باتری ها و سنسورها )، عایق های الکتریکی، نیمه هادی ها و سوپرهادی ها می گردند.
سرامیک های فروالکتریک کاربردهای بسیار زیادی در خازن ها، سنسورها، سرامیک های پیزوالکتریک، اجزای الکترواپتیک ترمیتورها دارند که بسیار مورد توجه محققان هستند. سرامیک های فرو مغناطیس نقش اساسی در صنعت الکترونیک ایفا کرده و کاربرد آن در سیستم های ذخیره سازی، ارتباطات ماهواره ای، تلویزیون و سایر سیستم های الکترونیکی است.
اجزای کوچک شده الکتروسرامیک ها (Miniaturization ) موادی هستند که در آینده کاربردهای زیادی خواهند داشت.
http://www.architects.ir/architects/file/nrqmttzhkl_ceramic-tile-restoration-500.jpg
شكل دهي سراميك ها
در این مقاله در مورد سفال گری صحبت می کنیم. بسیاری از تکنیک هایی که امروزه برای شکل دهی سرامیک های پیشرفته استفاده می شود. بوسیله ی سفال گران ابداع و استفاده می شده است. اما امروزه اینگونه فرآیندها اصلاح شده است و برای شکل دهی مواد درکاربردهای با فناوری بالا و سرامیک های جدید استفاده می شود. ما تنها می توانیم پودر خشک را شکل دهی کرده وآن را زنیتر کنیم. اما این مسئله مرسوم است که مقداری مایع به پودر اضافه می شود. و سپس فرآیند شکل دهی و پخت اتفاق می افتد. (دقیقا همانند استفاده کردن از آب در سفال گری). تغییر فرم های اتفاق افتاده در فرآیندشکل دهی باعث می شود تا مخلوط با استحکام پایین چسبنده شود و به بدنه ای محکم ومنسجم تبدیل شود.این بدنه را می توان به هندسه ی دلخواه در آورد. انتخاب عملیات شکل دهی برای یک محصول خاص به ابعاد و ثبات ابعادی محصول، ویژگی های زیرساختاری، میزان قابلیت تکثیر شدن نمونه بوسیله ی آن، مسائل اقتصادی و نوع شکل بستگی دارد.
لغات
در صنعت شکل دهی سرامیک ها لغات خاصی وجود دارد. زیرا این صنعت یک هنر قدیمی است. سابقاً پودرهای اصلی در خلوص و اندازه ی ذرات مناسب تهیه می شد و بوسیله ی آنها می شد اشکال مد نظر را تهیه کرد. بسیاری از روش های شکل دهی برای محصولات سرامیکی مناسب هستند. این روش ها را می توان به سه گروه عمده طبقه بندی کرد:
1) فشرده سازی پودر: پرس خشک، پرس گرم، پرس ایزواستاتیک سرد و...
2) ریخته گری : بوسیله ی قالب و دوغاب سرامیکی
3) شکل دهی پلاستیک: اکستروژن، قالب گیری تزریقی و... در این فرآیند از فشار برای شکل دهی بدنه ی خام سرامیکی استفاده می شود.
فشرده سازی پودر:
در این روش با فشردن پودر ماده ی سرامیکی، قطعه تشکیل می شود. پودر ممکن است بوسیله ی فرآیند فشرده سازی خشک (بدون افزودن بایندر) ویا بوسیله ی افزودن مقدار اندکی از یک بایندر به قطعه تبدیل شود. فشار اعمالی نیز می تواند غیر محوری یا ایزواستاتیک باشد.انتخاب روش فشرده سازی (پرس کردن ) به شکل محصول نهایی بستگی دارد. ما می توانیم اشکال ساده را بوسیله ی اعمال فشار غیر محوری و قعطات پیچیده را بوسیله ی اعمال فشار ایزواستاتیک تولید کنیم.
سرامیک های ریخته گری شده
این نوع از سرامیک ها معمولا در دمای اتاق و بوسیله ی تهیه ی یک دو غاب حاوی ذرات پودر تهیه می شوند. لازم به ذکر است که این فرآیند شباهتی به فرآیند ریخته گری فلزی ندارد. دو غاب تهیه شده به داخل قالب ریخته شده و مایع آن بوسیله ی جداره ی قالب (دیفوزیون از جداره) خارج می شود. خروج مایع از قالب سبب پدید آمدن جسمی با استحکام مناسب در داخل قالب می شود. به این روش ریخته گری روش ریخته گری لغزشی (Slip Casting) می گویند. از این روش برای شکل دهی بسیاری از محصولات سرامیکی سنتی (مانند ظروف تزئینی) استفاده می شود. در سال های اخیر از این روش برای شکل دهی محصولات سرامیکی پیشرفته (مانند پرده ها ی توربین و روتور توربین گازی) استفاده می شود. برای تولید فیلم های ضخیم و صفحات از روش ریخته گری نواری (tape Casting) استفاده می شود.
شکل دهی پلاستیک
این روش بدین صورت است که به پودر سرامیکی به میزان مشخصی آب اضافه می شود . تا پودر خاصیت پلاستیک پیدا کند و بتوان آن را تحت فشار شکل دهی کرد. این روش ابتدائاً برای شکل دهی خاک رس استفاده می شده است که پس از آن با انجام اعمال اصلاحی بر روی آن برای شکل دهی مواد پلیمری نیز استفاده می شود. مایع مورد استفاده در سرامیک های سنتی بر پایه ی رس، آب است. برای سیستم های سرامیکی که بر پایه ی رس نیستند. مواد آلی نیز ممکن است به جای آب استفاده شوند. بایندرهای آلی معمولا از ترکیبات چند گانه ساخته شده اند تا بتوانند وسکوزیته ی مناسب را به سیستم سرامیکی بدهند و همچنین خصوصیات بعد از پخت خوبی داشته باشند.
بایندر (binder)
بایندر ترکیبی است که استفاده می شود تا پودر در کنار هم نگه داشته شود و بتوان پودر را شکل دهی کرد.
دوغاب (Slurry)
دوغاب سوسپانسیونی از ذرات سرامیکی دریک مایع است.
نرم کننده (plasticizer)
نوعی بایندر است که باعث می شود دوغاب نرم یا انعطاف پذیر شود. این افزودنی خواص رئولوژیکی دوغاب را بهبود می دهد.
نمونه ی خام (green)
قطعه ای سرامیکی است که هنوز پخت نشده است.
دوغاب لعاب (Slip)
مخلوطی سوسپانسیونی است که به صورت پوشش بر روی بدنه ی خام قرار می گیرد و پس از پخت بر روی بدنه تشکیل لعاب را می دهد. برخی از روش های شکل دهی که در این مقاله به آنها می پردازیم، بدنه هایی سرامیکی تولید می کنند که فشردگی آنها تنها برای فرآیند ماشین کاری مناسب است (میزان استحکام آنها به حدی است که تنها بتوان آنها را ماشین کاری کرد.) به هر حال این بدنه ها کاملا متراکم نیستند و پیوند بین دانه ها در آنها ضعیف است.این حالت را خام بودن (green) می گویند.در واقع در این حالت، حالتی میان بدنه ی زنیتر شده ی با دانسیته ی بالا و پودر نرم است. روش های دیگری در شکل دهی سرامیک ها وجود دارد که در آنها با اعمال دمای بالا در حین شکل دهی بدنه های زنیتر شده با دانستیه ی بالا تولید می شود.
بایندر و نرم کننده ها
در اغلب موارد نیاز است تا به پودر سرامیکی مقداری بایندر اضافه کنیم. بایندر دو وظیفه دارد. در برخی روش های شکل دهی مانند اکستروژن، بایندر پلاستیسیته ی مورد نیاز برای شکل دهی را فراهم می کند. بایندر همچنین باعث می شد تا قطعه ی خام تولیدی پس از خشک شدن استحکام کافی را داشته باشد و در طی فرآیند ساخت و پخت دفورمه نشود. یکی از ویژگی های مهمی که بایندرها باید داشته باشند این است که بتوان بایندر را در طی فرایند پخت از بین برد و آن را از میان بدنه ی متراکم خارج کنیم، بدون آنکه بدنه معیوب شود. در اغلب موارد مواد پلیمری بایندرهای ایده آلی هستند. در سفال گری اغلباً از آب به عنوان بایندر استفاده می شود. در این صنعت آب به میزان کافی به خاک افزوده می شود. تا گل حاصله پلاستیسیته ی مورد نیاز برای شکل دهی را بدست آورد. در واقع میزان آب در حدی است که نمونه در طی پخت ثبات خود را حفظ کند. برای بهبود خواص رئولوژیکی در اغلب موارد از نرم کننده استفاده می شود. در اصل افزودن نرم کننده به سوسپانسیون ها به صنعت سرامیک منحصر نیست و از آن در بسیاری از فرآیندهای پودری استفاده می شود. برخی اوقاف تفاوت میان نرم کننده و بایندر زیاد واضح نیست. بایندرها همچنین در فرآیندهای شکل دهی فلزات بوسیله ی پودر فلز نیز کاربرد دارند.
دوغاب
واژه ی دوغاب لعاب ( Slip) از لغتی انگلیسی آمده است که به معنای کرم (cream) است کرم سوسپانسیونی از ذرات شیر داخل مایع (آب) است که در فرآیند تولید پنیر بوجود می آید. عموماً دوغاب لعاب شامل ذرات سرامیکی کوچک (زیر 10 میکرون ) است که در داخل یک محیط مایع معلق هستند. در سفال گری این مایع معمولا آب است. سوسپانسیون بوجود آمده می تواند حتی بیش از 60% حجمی ماده ی خشک داشته باشد. دی فلوکولانت ها (deflocculents) به دو غاب لعاب اضافه می شود تا محیط الکترویکی هر ذره را بهبود دهد. این مسئله موجب می شود ذرات همدیگر را دفع کنند.
دی فلوکولانت
دی فلوکولاسیون فرآیندی است که بوسیله ی آن توده های به هم چسبیده ی ذرات سرامیکی موجود در مایع متلاشی شده و به ذرات تبدیل می شوند. از این رو در فلوکولانت یک افزودنی است که این فرآیند را انجام می دهد. به عبارت دیگر دی فلوکولاسیون مخالف دلمه شدن (coagulation) است.
کلوئید
کلوئید عموما به عنوان هر ماده ای تعریف می شود که دارای ذرات مادی است که از محلول های معمولی بزرگ تر اما بسیار ریزتر از آن هستند که بدون بزرگنمایی نوری قابل دیدن باشند. (تقریبا 10-1nm میکرون) . کلوئیدها می توانند به روش های مختلف به یکدیگر پیوند دهند . سیستم های کلوئیدی می توانند چندین شکل داشته باشند. فرضی که ما با آن روبرو هستیم بدین صورت است که یک ماده در دیگری پراکنده شده است. حرکت براوونی یکی از پدیده هایی است که در این مخلوط ها بوجود می آید. دوغاب یک کلوئید است. ما می توانیم خواص دوغاب را بوسیله ی افزودن فلوکولانت و یا دی فلوکولانت تغییر دهیم.
دوغاب
ذرات رس در مایع به صورت سوسپانسیون در می آیند.( این مایع در مورد سفال، آب است) . همین طور که مقدار آب دوغاب کاهش می یابد، میزان صلبیت آن افزایش می یابد. لعاب های مورد استفاده در سفال گری دارای عملکردی شبیه به رس در مایع هستند (البته میزان آب لعاب بیشتر است). گل کوزه گری از یک دوغاب اولیه تولید می شود. این دوغاب از رس های طبیعی تولید شده است. دوغاب به طور مکرر فیلتر می شود تا ماده ای هموژن و با قابلیت ثبات بالا پدید آید. سپس قطعاتی از گل بوسیله ی تبخیر رطوبت از کلوئید بوجود می آید. محصول پایانی به مرحله ی اکستروژن می رود و سپس در بسته بندی های خاص قرار می گیرد تا رطوبت باقی مانده در آن از بین نرود.
http://www.architects.ir/architects/file/ceramic_porcelain_tile.jpg
سراميک مشتق از کلمه keramos يوناني است که به معني سفالينه يا شئي پخته شده است. در واقع منشا پيدايش اين علم همان سفالينههاي ساخته شده توسط انسانهاي اوليه هستند. در واقع قبل از کشف و استفاده فلزات، بشر از گلهاي رس به علت وفور و فراواني آنها و همچنين شکلگيري بسيار خوب آنها در در صورت مخلوط شدن با آب و درجه حرارت نسبتاً پايين پخت آنها استفاده ميکرد. آلومينوسيليکاتها که خاکهاي رسي خود آنها به حساب ميآيند، از عناصر آلومينيوم، سيليسم و اکسيژن ساخته ميشوند که اين سه عنصر بر روي هم حدود 85 درصد پوسته جامد کرة زمين را تشکيل ميدهند. اين سه عنصر فراوانترين عناصر پوسته زمين هستند.
صنعت ساخت سفالينهها در 4000 سال قبل از ميلاد مسيح پيشرفت زيادي کرده بود. اکنون، سراميک را به طور کلي به عنوان هنر و علم ساختن و به کار بردن اشياء جامدي که اجزاء تشکيلدهنده اصلي و عمدة آنها مواد غيرآلي و غيرفلزي ميباشند، تعريف ميکنيم و بررسي ساختمان و خواص اينگونه مواد نيز جزء اين علم است.
فرآوردههاي سراميکي:
اين فرآوردهها را ميتوان به دو گروه عمده تقسيم کرد:
1) سراميکهاي سنتي: اساساً مواد تشکيلدهنده صنايع سيليکاتي يعني محصولات رسي، سيمان و شيشههاي سيليکاتي و چينيها هستند.
فرآوردههاي شيشهاي بزرگترين بخش صنعت سراميک محسوب ميشوند. ساير بخشها به ترتيب اولويت عبارتند از:
محصولات سيماني داخلي ( مانند سيمانهاي هيدورليکي که در صنايع ساختماني به مصرف ميرسند.)
سفيدآلات، ( Whiteware): شامل سفالينهها، چينيها و ترکيبات چيني مانند هستند.
لعابهاي چيني
محصولات رسي ساختماني: که بهطور عمده از آجرها و کاشيها تشکيل ميشوند.
ديرگدازها
صنعت سازنده مواد ساينده: عمدتاً سايندههاي سيلسيم کاربيدي و آلومينائي
2) سراميکهاي نوين: اين دسته براي جوابگوئي به نيازهاي مخصوص مانند مقاومت حرارتي بيشتر، خواص مکانيکي بهتر و خواص الکتريکي ويژه و مقاومت شيميايي افزونتر به وجود آوردهاند.
گروهي از انواع اين نوع سراميکها عبارتنداز:
سراميکهاي اکسيدي خالص با ساختماني يکنواخت: به عنوان اجزاء الکتريکي با ديرگداز بکار ميروند. اکسيدهايي مانند آلومينا (Al2O3)، زيرکونيا (ZrO2)، توريا (ThO2)، بريليا (BeO) و منيزيا (MgO) بيشتر مورد استفاده قرار ميگيرند.
سراميکهاي الکترواپتيکي (الکترونيکي– نوري): مانند نايوبيت ليتيم ( LiNbO3) و تيتانات که اينها محيطي را فراهم ميآورند که بوسيله آن علائم الکتريکي به نوري تبديل ميشوند.
سراميکهاي مغناطيسي: اين مواد اساس واحدهاي حافظه مغناطيسي را در کامپيوترهاي بزرگ تشکيل ميدهند.
تک بلورها
سراميکهاي نيتريدي: مانند نيتريد آلومينيوم، نيتريد سيلسيم و نيتريد بور که بسيار ديرگداز و استحکام خوبي در درجه حرارتهاي بالا دارند.
لعابهاي سراميکي: به عنوان پوشش فلز آلومينيوم توليد ميشوند.
مواد مرکب کامپوزيت (فلزي – سراميکي): هر دو فاز فلزي و سراميکي در اين مواد وجود دارد.
کاربيدهاي سراميکي: به عنوان ساينده مورد استفاده قرار ميگيرند.
بوريدهاي سراميکي: از نظر استحکام و مقاومت اکسيده شدن در درجه حرارتهاي بالا حائز اهميت هستند.
سراميکهاي فروالکتريکي: داراي ثابت ديالکتريک بسيار بالائي بوده و بهعنوان اجزاء الکترونيکي در خازنها کاربرد دارد.
شيشه سراميکها
علم سراميک:
به طور کلي علم سراميک را ميتوان به دو شاخه سراميک فيزيکي و سراميک صنعتي تقسيم کرد.
سراميک فيزيکي درباره ساختمان مواد سراميکي و خواص آنها بحث ميکند. در اين شاخه ساختمان اتم، اتصالات بين اتمها، ساختمانهاي بلوري، ساختمان شيشه، معايب ساختماني، استحالههاي فازي، رشد دانهها، تبلور مجدد و مباحثي نظير آنها مورد بحث قرار ميگيرد. علاوه بر اين خواص الکتريکي، مغناطيسي، نوري، حرارتي و مکانيکي سراميکها هم مورد بحث قرار ميگيرند.
در سراميک صنعتي از تکنولوژي ساخت سراميکها صحبت ميشود.اصولاً مراحل ساخت هر جسم سراميکي به صورت زير است:
انتخاب مواد اوليه و تغليظ و تخليص آن.
آمادهسازي مواد اوليه (خردکردن- دانهبندي- مخلوط کردن )
شکل دادن
خشک کردن
پختن (زينتر کردن)
http://www.architects.ir/architects/file/talavera.jpg
خواص سرامیک ها ( بيوسراميك ها)
مواد سرامیکی خواص ویژه ای از خود نشان می دهند به طوری که این امر موجب می گردد که جایگزین دیگری با مواد دیگر نداشته باشد و بنابراین نقش ویژه ای در تهیه انواع بیشماری از ادوات و تجهیزات بازی می کند. برای ایجاد یک خواص خوب و مناسب ودر نتیجه بکارگیری صحیح مواد سرامیکی دانستن اطلاعات درمورد رابطه بین خواص و ریزساختار مواد سرامیکی ضروری است. ریزساختار مواد بستگی زیادی به فرآیند تولید و روش تهیه دارد. سرامیک های پیشرفته امروز کاربردهای بسیار فراوانی دارند و امروزه سعی بر تولید مواد سرامیکی است که به شکل کامل تولید شده و بعد از تولید نیاز به ماشین کاری و در نتیجه تحمیل هزینه اضافی به سیستم حذف گردد.
مواد جدیدی که امروزه اهمیت ویژه ای برای تحقیق و توسعه این مواد در نظر گرفته می شوند در زمینه سرامیک به شرح زیر می باشند :
بیوسرامیک ها که تاثیر به سزایی در رشد صنعت پزشکی و بهبود وضعیت سلامتی جوامع انسانی داشته اند، مواد ساینده نظیر ابزار برش و چرخ های ساینده که کاربری آن در صنایع کاربردی فلزات و ... است. سرامیک های سخت و بسیار سخت (hard and Super hard ceramics ) موادی هستند که مطالعه بر روی آن ها بسیار پر اهمیت و البته هزینه بر است.
روش های مطالعه رفتار مواد در دماهای بالا، فیلترها، خوردگی مواد نیز نیاز به تقویت دارد. تجزیه SO و NO در فرآیند احتراق محصولات سرامیکی در دماهایی پائین از طریق احیای کاتالیتیک (Catalytic reduction ) مورد بررسی قرار گیرد.
اجزای سرامیکی برای هایپر فیلتراسیون (Hyper filtration ) گازی در اندازه مولکولی در مایع آب مناسب هستند. الکتروسرامیک ها کاربردهای بسیار متنوعی داشته و شامل سرامیک های با هدایت یونی (کاربرد در باتری ها و سنسورها )، عایق های الکتریکی، نیمه هادی ها و سوپرهادی ها می گردند.
سرامیک های فروالکتریک کاربردهای بسیار زیادی در خازن ها، سنسورها، سرامیک های پیزوالکتریک، اجزای الکترواپتیک ترمیتورها دارند که بسیار مورد توجه محققان هستند. سرامیک های فرو مغناطیس نقش اساسی در صنعت الکترونیک ایفا کرده و کاربرد آن در سیستم های ذخیره سازی، ارتباطات ماهواره ای، تلویزیون و سایر سیستم های الکترونیکی است.
اجزای کوچک شده الکتروسرامیک ها (Miniaturization ) موادی هستند که در آینده کاربردهای زیادی خواهند داشت.
http://www.architects.ir/architects/file/nrqmttzhkl_ceramic-tile-restoration-500.jpg
شكل دهي سراميك ها
در این مقاله در مورد سفال گری صحبت می کنیم. بسیاری از تکنیک هایی که امروزه برای شکل دهی سرامیک های پیشرفته استفاده می شود. بوسیله ی سفال گران ابداع و استفاده می شده است. اما امروزه اینگونه فرآیندها اصلاح شده است و برای شکل دهی مواد درکاربردهای با فناوری بالا و سرامیک های جدید استفاده می شود. ما تنها می توانیم پودر خشک را شکل دهی کرده وآن را زنیتر کنیم. اما این مسئله مرسوم است که مقداری مایع به پودر اضافه می شود. و سپس فرآیند شکل دهی و پخت اتفاق می افتد. (دقیقا همانند استفاده کردن از آب در سفال گری). تغییر فرم های اتفاق افتاده در فرآیندشکل دهی باعث می شود تا مخلوط با استحکام پایین چسبنده شود و به بدنه ای محکم ومنسجم تبدیل شود.این بدنه را می توان به هندسه ی دلخواه در آورد. انتخاب عملیات شکل دهی برای یک محصول خاص به ابعاد و ثبات ابعادی محصول، ویژگی های زیرساختاری، میزان قابلیت تکثیر شدن نمونه بوسیله ی آن، مسائل اقتصادی و نوع شکل بستگی دارد.
لغات
در صنعت شکل دهی سرامیک ها لغات خاصی وجود دارد. زیرا این صنعت یک هنر قدیمی است. سابقاً پودرهای اصلی در خلوص و اندازه ی ذرات مناسب تهیه می شد و بوسیله ی آنها می شد اشکال مد نظر را تهیه کرد. بسیاری از روش های شکل دهی برای محصولات سرامیکی مناسب هستند. این روش ها را می توان به سه گروه عمده طبقه بندی کرد:
1) فشرده سازی پودر: پرس خشک، پرس گرم، پرس ایزواستاتیک سرد و...
2) ریخته گری : بوسیله ی قالب و دوغاب سرامیکی
3) شکل دهی پلاستیک: اکستروژن، قالب گیری تزریقی و... در این فرآیند از فشار برای شکل دهی بدنه ی خام سرامیکی استفاده می شود.
فشرده سازی پودر:
در این روش با فشردن پودر ماده ی سرامیکی، قطعه تشکیل می شود. پودر ممکن است بوسیله ی فرآیند فشرده سازی خشک (بدون افزودن بایندر) ویا بوسیله ی افزودن مقدار اندکی از یک بایندر به قطعه تبدیل شود. فشار اعمالی نیز می تواند غیر محوری یا ایزواستاتیک باشد.انتخاب روش فشرده سازی (پرس کردن ) به شکل محصول نهایی بستگی دارد. ما می توانیم اشکال ساده را بوسیله ی اعمال فشار غیر محوری و قعطات پیچیده را بوسیله ی اعمال فشار ایزواستاتیک تولید کنیم.
سرامیک های ریخته گری شده
این نوع از سرامیک ها معمولا در دمای اتاق و بوسیله ی تهیه ی یک دو غاب حاوی ذرات پودر تهیه می شوند. لازم به ذکر است که این فرآیند شباهتی به فرآیند ریخته گری فلزی ندارد. دو غاب تهیه شده به داخل قالب ریخته شده و مایع آن بوسیله ی جداره ی قالب (دیفوزیون از جداره) خارج می شود. خروج مایع از قالب سبب پدید آمدن جسمی با استحکام مناسب در داخل قالب می شود. به این روش ریخته گری روش ریخته گری لغزشی (Slip Casting) می گویند. از این روش برای شکل دهی بسیاری از محصولات سرامیکی سنتی (مانند ظروف تزئینی) استفاده می شود. در سال های اخیر از این روش برای شکل دهی محصولات سرامیکی پیشرفته (مانند پرده ها ی توربین و روتور توربین گازی) استفاده می شود. برای تولید فیلم های ضخیم و صفحات از روش ریخته گری نواری (tape Casting) استفاده می شود.
شکل دهی پلاستیک
این روش بدین صورت است که به پودر سرامیکی به میزان مشخصی آب اضافه می شود . تا پودر خاصیت پلاستیک پیدا کند و بتوان آن را تحت فشار شکل دهی کرد. این روش ابتدائاً برای شکل دهی خاک رس استفاده می شده است که پس از آن با انجام اعمال اصلاحی بر روی آن برای شکل دهی مواد پلیمری نیز استفاده می شود. مایع مورد استفاده در سرامیک های سنتی بر پایه ی رس، آب است. برای سیستم های سرامیکی که بر پایه ی رس نیستند. مواد آلی نیز ممکن است به جای آب استفاده شوند. بایندرهای آلی معمولا از ترکیبات چند گانه ساخته شده اند تا بتوانند وسکوزیته ی مناسب را به سیستم سرامیکی بدهند و همچنین خصوصیات بعد از پخت خوبی داشته باشند.
بایندر (binder)
بایندر ترکیبی است که استفاده می شود تا پودر در کنار هم نگه داشته شود و بتوان پودر را شکل دهی کرد.
دوغاب (Slurry)
دوغاب سوسپانسیونی از ذرات سرامیکی دریک مایع است.
نرم کننده (plasticizer)
نوعی بایندر است که باعث می شود دوغاب نرم یا انعطاف پذیر شود. این افزودنی خواص رئولوژیکی دوغاب را بهبود می دهد.
نمونه ی خام (green)
قطعه ای سرامیکی است که هنوز پخت نشده است.
دوغاب لعاب (Slip)
مخلوطی سوسپانسیونی است که به صورت پوشش بر روی بدنه ی خام قرار می گیرد و پس از پخت بر روی بدنه تشکیل لعاب را می دهد. برخی از روش های شکل دهی که در این مقاله به آنها می پردازیم، بدنه هایی سرامیکی تولید می کنند که فشردگی آنها تنها برای فرآیند ماشین کاری مناسب است (میزان استحکام آنها به حدی است که تنها بتوان آنها را ماشین کاری کرد.) به هر حال این بدنه ها کاملا متراکم نیستند و پیوند بین دانه ها در آنها ضعیف است.این حالت را خام بودن (green) می گویند.در واقع در این حالت، حالتی میان بدنه ی زنیتر شده ی با دانسیته ی بالا و پودر نرم است. روش های دیگری در شکل دهی سرامیک ها وجود دارد که در آنها با اعمال دمای بالا در حین شکل دهی بدنه های زنیتر شده با دانستیه ی بالا تولید می شود.
بایندر و نرم کننده ها
در اغلب موارد نیاز است تا به پودر سرامیکی مقداری بایندر اضافه کنیم. بایندر دو وظیفه دارد. در برخی روش های شکل دهی مانند اکستروژن، بایندر پلاستیسیته ی مورد نیاز برای شکل دهی را فراهم می کند. بایندر همچنین باعث می شد تا قطعه ی خام تولیدی پس از خشک شدن استحکام کافی را داشته باشد و در طی فرآیند ساخت و پخت دفورمه نشود. یکی از ویژگی های مهمی که بایندرها باید داشته باشند این است که بتوان بایندر را در طی فرایند پخت از بین برد و آن را از میان بدنه ی متراکم خارج کنیم، بدون آنکه بدنه معیوب شود. در اغلب موارد مواد پلیمری بایندرهای ایده آلی هستند. در سفال گری اغلباً از آب به عنوان بایندر استفاده می شود. در این صنعت آب به میزان کافی به خاک افزوده می شود. تا گل حاصله پلاستیسیته ی مورد نیاز برای شکل دهی را بدست آورد. در واقع میزان آب در حدی است که نمونه در طی پخت ثبات خود را حفظ کند. برای بهبود خواص رئولوژیکی در اغلب موارد از نرم کننده استفاده می شود. در اصل افزودن نرم کننده به سوسپانسیون ها به صنعت سرامیک منحصر نیست و از آن در بسیاری از فرآیندهای پودری استفاده می شود. برخی اوقاف تفاوت میان نرم کننده و بایندر زیاد واضح نیست. بایندرها همچنین در فرآیندهای شکل دهی فلزات بوسیله ی پودر فلز نیز کاربرد دارند.
دوغاب
واژه ی دوغاب لعاب ( Slip) از لغتی انگلیسی آمده است که به معنای کرم (cream) است کرم سوسپانسیونی از ذرات شیر داخل مایع (آب) است که در فرآیند تولید پنیر بوجود می آید. عموماً دوغاب لعاب شامل ذرات سرامیکی کوچک (زیر 10 میکرون ) است که در داخل یک محیط مایع معلق هستند. در سفال گری این مایع معمولا آب است. سوسپانسیون بوجود آمده می تواند حتی بیش از 60% حجمی ماده ی خشک داشته باشد. دی فلوکولانت ها (deflocculents) به دو غاب لعاب اضافه می شود تا محیط الکترویکی هر ذره را بهبود دهد. این مسئله موجب می شود ذرات همدیگر را دفع کنند.
دی فلوکولانت
دی فلوکولاسیون فرآیندی است که بوسیله ی آن توده های به هم چسبیده ی ذرات سرامیکی موجود در مایع متلاشی شده و به ذرات تبدیل می شوند. از این رو در فلوکولانت یک افزودنی است که این فرآیند را انجام می دهد. به عبارت دیگر دی فلوکولاسیون مخالف دلمه شدن (coagulation) است.
کلوئید
کلوئید عموما به عنوان هر ماده ای تعریف می شود که دارای ذرات مادی است که از محلول های معمولی بزرگ تر اما بسیار ریزتر از آن هستند که بدون بزرگنمایی نوری قابل دیدن باشند. (تقریبا 10-1nm میکرون) . کلوئیدها می توانند به روش های مختلف به یکدیگر پیوند دهند . سیستم های کلوئیدی می توانند چندین شکل داشته باشند. فرضی که ما با آن روبرو هستیم بدین صورت است که یک ماده در دیگری پراکنده شده است. حرکت براوونی یکی از پدیده هایی است که در این مخلوط ها بوجود می آید. دوغاب یک کلوئید است. ما می توانیم خواص دوغاب را بوسیله ی افزودن فلوکولانت و یا دی فلوکولانت تغییر دهیم.
دوغاب
ذرات رس در مایع به صورت سوسپانسیون در می آیند.( این مایع در مورد سفال، آب است) . همین طور که مقدار آب دوغاب کاهش می یابد، میزان صلبیت آن افزایش می یابد. لعاب های مورد استفاده در سفال گری دارای عملکردی شبیه به رس در مایع هستند (البته میزان آب لعاب بیشتر است). گل کوزه گری از یک دوغاب اولیه تولید می شود. این دوغاب از رس های طبیعی تولید شده است. دوغاب به طور مکرر فیلتر می شود تا ماده ای هموژن و با قابلیت ثبات بالا پدید آید. سپس قطعاتی از گل بوسیله ی تبخیر رطوبت از کلوئید بوجود می آید. محصول پایانی به مرحله ی اکستروژن می رود و سپس در بسته بندی های خاص قرار می گیرد تا رطوبت باقی مانده در آن از بین نرود.
http://www.architects.ir/architects/file/ceramic_porcelain_tile.jpg