MRT
15th February 2009, 10:47 PM
توجيه خصوصيات و رفتارهاي عجيب و دوگانه سياه چالهها و ستارگان نوتروني
يادآوري : منظور ما از جرم نوتروني در اين مبحث ، يك سياه چاله و يا يك ستاره نوتروني ميباشد .
1 - تاثيرات دوران ( سرعت زاويهاي ) بر شكل هندسي ( حجمي ) يك جرم نوتروني :
شكل هندسي واقعي يك جرم نوتروني ، بسته به سرعت دوران ( سرعت زاويهاي ) از يك كره تا يك تورس ( Torus ) متغير است ، يعني اشكال زير !
http://ki2100.com/images/physics/end-of-the-univers/notron2.jpg
علت اختيار شكل تورس براي بعضي از اجرام نوتروني اين است كه سرعت دوران بعضي از آنها آنقدر زياد است كه نيروي گريز از مركز باعث پخ و تو خالي شدن آنها ميشود ، سرعت دوران بعضي از آنها چند هزار دور در ثانيه تخمين زده ميشود و سرعت حركت بعضي از ستارگان نوتروني 4000 كيلومتر در ثانيه اندازه گيري شده است . اجرام نوتروني ميتوانند در مشخصات فيزيكي بسيار متنوع و گوناگون باشند .
" / يك ستاره نوتروني در هر ثانيه بيش از 1120 بار دور خود ميچرخد .
به گزارش سايت اينترنتي "space.com"، اين ستاره نوتروني در حقيقت بقاياي سوخته ستاره عظيمي است كه هم اكنون به چگالي بسيار زيادي دست يافته كه اين ميزان چگالي پيش از اين تنها در سياه چالهها مشاهده شده است .
به گفته ستاره شناسان ، چگالي اين ستاره نوتروني به اندازهاي زياد است كه براي درك آن بايد بتوانيم تمامي جرم ستاره خورشيد را در منطقهاي به ابعاد يك شهر جاي بدهيم . ماده در اين ستاره به اندازهاي فشرده شده است كه تنها جرمي برابر با يك بند انگشت از اين ستاره ، در كره زمين صدها ميليون تن وزن خواهد داشت .
ستاره شناسان عقيده دارند دليل چرخش دوراني سريع اين ستاره ، تمركز شديد تمامي انرژي حركتي آن است . در اين ستاره نوتروني كه خود بازمانده يك ستاره عظيم است ، هر از چند گاهي انفجارهاي حرارتي - هستهاي بزرگي رخ ميدهد و پرتوهاي اشعه ايكس از آن منتشر ميشوند . هم اكنون ستاره شناسان آژانس فضايي اروپا با استفاده از ماهوارهي "اينتگرال" اين سازمان با مشاهده همين انفجارها موفق به اندازه گيري سرعت چرخش اين ستاره ، به نام XTE J1739-285 شدهاند .
ستاره مذكور هم اكنون با سرعت 1120 چرخش در هر ثانيه ، دور محور خود ميگردد . بيشترين ركورد ثبت شده براي چرخش وضعي ستارهها پيش از اين به ستاره نوتروني ديگري تعلق داشت كه در هر ثانيه 760 بار دور خود ميچرخيد .
به گفته "اريك كولكرز" دانشمند آژانس فضايي اروپا ، سرعت چرخش اين ستاره بيشتر از ميزاني است كه ما در گذشته تصور ميكرديم كه ممكن است براي يك ستاره اتفاق بيافتد و به همين علت بايد مشاهدات بيشتري براي تاييد سرعت چرخش ستاره مذكور انجام شود .
دانشمندان عقيده دارند ، سرعت چرخش ستارهها داراي يك حد بالاي نهايي است كه چنانچه سرعت چرخش يك ستاره از آن بالاتر رود ، ستاره از هم ميپاشد .
با اين وجود از آنجا كه ساختار ستارههاي نوتروني هنوز دقيقا مشخص نيست ، دانشمندان نيز نميتوانند حد بالاي سرعت چرخش دوراني اين ستارهها را تعيين كنند . به غير از ستارههاي نوتروني ، برخي سياه چالهها نيز از جمله اجرام آسماني عظيم با سرعت چرخش وضعي بالا هستند . سال ميلادي گذشته ستاره شناسان موفق به كشف سياه چالهاي شدند كه با سرعت 950 دور در ثانيه حول خود ميچرخد . براي مقايسه ، ستاره خورشيد در منظومه شمسي با سرعتي بسيار كمتر و در هر 36 روز تنها يك بار حول محور خود ميچرخد . "
با توجه به اين چنين سرعتهاي دوراني بالايي براي يك جرم نوتروني ، ميتوان با در نظر گرفتن نيروي گريز از مركز وارده بر پيكره آن و مقاومت بسيار زياد شبكه نوتروني ، براي سرعتهاي بيشتر از 1000 دور در ثانيه شكل زير را تصور نمود .
http://ki2100.com/images/physics/black-hole/1.jpg
2- بار الكتريكي يك جرم نوتروني
مقادير زيادي از الكترونها قبل از انفجار يك ستاره در سطح آن تجمع كرده و با انفجار ستاره همراه با پوسته آن به بيرون پرتاب ميشوند . در اين وضعيت توازن مابين تعداد الكترونها و پروتونها در ستاره به هم خورده و تعداد پروتونها بيشتر از تعداد الكترونها ميشود كه به دنبال آن نوترون كمتري توليد ميشود و مقدار بسيار زيادي از پروتونها همراه نوترونها تشكيل يك جرم متحد را ميدهند و همانطور كه ميدانيم در هسته عناصر به اندازه عدد اتمي عنصر ، پروتون وجود دارد و الكترون مازادي در ستارگان وجود ندارد كه آنها را تبديل به نوترون كند ، بديهي است كه اين پروتونها به علت داشتن دافعه الكتريكي نسبت به يكديگر ، در سطح بيروني جرم نوتروني تجمع خواهند كرد كه بار الكتريكي مثبت جرم نوتروني را فوقالعاده زياد خواهند نمود . به هر حال ميتوان سه لايه كلي براي جرم نوتروني در نظر گرفت 1- هسته مركزي ، متشكل از نوترونهاي خالص 2- لايه مياني ، مخلوطي از نوترونها و پروتونها 3- لايه خارجي ، پروتون خالص ، به شكل زير توجه نماييد !
http://ki2100.com/images/physics/black-hole/4.jpg
پوسته قرمز رنگ بيانگر تجمع پروتونهاي خالص در سطح خارجي يك جرم نوتروني دوار است كه جهت درك موضوع به مقدار 30 درجه برش خورده است .
3 - ميدان الكتريكي ، گرانشي و مغناطيسي يك جرم نوتروني دوار ( در حال چرخش )
http://ki2100.com/images/physics/black-hole/5.jpg
در شكل فوق جرم نوتروني از بالا و در حال چرخش موافق عقربههاي ساعت نشان داده ميشود ، مارپيچ يا دواير سبز رنگ بيانگر انحنا يا دوران ميدان گرانشي موافق عقربههاي ساعت است ، براي اينكه به صورت قراردادي امتداد بردارها يا نيروهاي گرانشي را از خارج به طرف مركز ميدان در نظر ميگيريم و مارپيچ يا دواير قرمز رنگ ، بيانگر دوران ميدان الكتريكي موافق عقربههاي ساعت است كه با توجه به جهت ميدان الكتريكي مثبت ، جهت اصلي ميدان الكتريكي مخالف جهت چرخش عقربههاي ساعت خواهد شد . در شكل فوق جهت ميدان گرانشي و ميدان الكتريكي مخالف يكديگر شكل ميگيرند .
http://ki2100.com/images/physics/black-hole/6.jpg
شكل فوق جرم نوتروني قبلي را از پهلو نشان ميدهد ، خطوط آبي رنگ ، بيانگر ميدان مغناطيسي حاصل از دوران ميدان الكتريكي است و اين ميدان مغناطيسي به واسطه وجود ميدان الكتريكي و گرانشي فوقالعاده قوي و شديد جرم نوتروني ، از كنارهها بريده و يا اينكه به شدت خم شده است و بعد از خوابيدن بر ميدان الكتريكي و گرانشي به صورت موازي در آمده است .
http://ki2100.com/images/physics/black-hole/7.jpg
شكل فوق نماي پرسپكتيو همان جرم دوار نوتروني را نشان ميدهد ، مارپيچهاي بنفش رنگ كه جهت تاب خوردن آنها هم جهت با دوران ميدان الكتريكي است ، مسير ورود ( سقوط ) ذرات باردار منفي به داخل جرم نوتروني و همچنين خروج ( پرتاب ) ذرات باردار مثبت را نشان ميدهد ، براي اينكه ما به صورت قراردادي امتداد نيروها و يا بردارهاي ميدان الكتريكي مثبت را از داخل به خارج ميدان در نظر ميگيريم . براي واضح بودن رسم ، فقط يك سطح از سه ميدان گرانشي ، الكتريكي و مغناطيسي رسم شده است و ميتوانيم شكل فوق را در تمامي ابعاد توسعه دهيم . در حقيقت چنين به نظر ميرسد كه يك جرم نوتروني باردار دوار براي ذرات باردار همانند يك شتاب دهنده فوقالعاده قوي نجومي عمل ميكند و يك ابر جت مكش و پرتاب ذرات باردار در فضاست ،
http://ki2100.com/images/physics/black-hole/15.jpg
ولي يك جرم نوتروني براي نوترونها صرفا جذب كننده به نظر ميرسد ، و علت آن اين است كه قدرت ميدان الكتريكي و مغناطيسي يك جرم نوتروني باردار به مراتب بيشتر از قدرت ميدان گرانشي آن است و در اين حالت بخصوص ، گرانش جرم نوتروني نميتواند آنچنان بر ذرات باردار تاثير گذار باشد ، بلكه در نهايت اين ميدان الكترومغناطيسي جرم نوتروني است كه ميتواند براي ذرات باردار تاثير گذار باشد . يك جرم نوتروني دوار ، همچون شتاب دهنده مغناطيسي ( مداري يا چرخشي ) به ذرات باردار انرژي و شتاب ميدهد ، پديدهاي است كه مشاهده شده و آن را پارادوكس ( تناقض ) بزرگ اجرام نوتروني ميشناسند و علت آن اين است كه ، زماني كه نور توان فرار از گرانش جرم نوتروني را ندارد چگونه ذرات باردار توان فرار از ميدان گرانش را خواهند داشت ؟ كه با توجه به توضيحات فوق ، مسئلهاي كاملا ساده و طبيعي به نظر رسيده و نميتواند تناقضي با ساختار فيزيكي يك جرم نوتروني باردار داشته باشد . گازهايي كه وارد ميدان گرانشي ميشوند بعد از به چرخش در آمدن به دور جرم نوتروني ، به مرور زمان واكنش هستهاي انجام داده و بعد از توليد و انتشار امواج الكترومغناطيسي كه بيشتر به صورت اشعه ايكس است به طرف مركز حركت و بعد از تبديل شدن به نوترون ، همراه پروتونها جذب جرم نوتروني شده كه در اين حالت مقداري از پروتونها با سرعتي نزديك به سرعت نور به خارج پرتاب ميشوند ، آنهم به صورت مارپيچي و دوراني .
4 - سرعت حركت اجرام نوتروني
ساختار فيزيكي كه يك جرم نوتروني دارد ميتواند به آن شتاب و سرعت فوقالعادهاي بدهد ، يعني چيزي نزديك به 4000 كيلومتر در ثانيه و حتي بيشتر از آن .
5- شناسايي اجرام نوتروني
"/ بخاطر خاصيت جذب نور ، تشخيص اجرام نوتروني بسيار مشكل است و مهمترين راهي كه به كيهان شناسان امكان شناسايي آنها را ميدهد ، مشاهده ديسك تجمعي است . نكته زيبا اينجاست كه گازها و مواد قسمتهاي داخلي ديسك ، سريعتر از گاز نواحي دور دست مي چرخند و در واقع سرعت قسمتهاي مختلف ديسك متفاوت است . لذا گازها تحت اصطكاك ، مالش و يونيزه شدن و برخورد شديد با يكديگر در ميادين گرانشي و الكتريكي ، بسيار داغ شده و از خود انواع مختلفي از تشعشعات حامل انرژي را ساطع ميكنند و يك منبع نيرومند پرتو x را تشكيل ميدهند كه توسط تلسكوپهاي امواج x قابل رويت ميباشد . علاوه بر امواج x معمولاً از طريق وجود لنزهاي گرانشي ، و ستارهاي در حال چرخش به دور يك شي غير قابل رويت نيز مي توان به وجود اجرام نوتروني در يك منطقه از فضا پيبرد . به طور كلي اجرام نوتروني در دو نوع چرخان و تقريبا غير چرخان وجود دارند و بعضي از آنها كه به سياه چالههاي كهكشاني موسومند در داخل يك مركز ( هسته ) كهكشان تشكيل ميشوند . شواهدي از وجود اين اجرام در قلب كهكشانها در دست است .
http://ki2100.com/images/physics/black-hole/8.jpg
لازم به توضيح است ، همانطور كه قبلا در مورد دوران ميادين گفته شد با دوران يك جرم نوتروني ، ميدان گرانشي آن نيز دوران كرده و به صورت منحني دايرهاي شكل در ميآيد كه ستاره مجاور ( همدم ) آن مجبور است بدون اينكه جذب مركز گرانش شود به دور جرم نوتروني به چرخش درآيد و باريكهاي از گاز ستاره به صورت مارپيچ به طرف جرم نوتروني سقوط كند كه مطالعه ساختار اجرام نوتروني ميتواند پديده دوران ميادين را مشخص و معلوم كند .
http://ki2100.com/images/physics/black-hole/9.jpg
ديسك تجمعي در پيرامون يك جرم نوتروني دوار ، منطقهاي بسيار شگفت انگيز ميباشد ، براي اينكه اتمهاي يونيزه شده از يك طرف تحت تاثير نيروي جاذبه گرانشي قرار ميگيرند و از طرف ديگر نيروي دافعه الكتريكي بر آنها اعمال ميشود كه سر انجام نهايي فرآيند ، حرارتهاي خيلي بالا به علت اصطكاكي است كه ميتوان اسم اين پديده را اصطكاك گرانشي الكترومغناطيسي ناميد كه ميتواند از شدت ميدان الكتريكي ذرات باردار كاسته و آنها را جذب هسته سياهچاله نمايد .
6 - پالسار يا پولسار چيست ؟
"/ پالسار نوعي ستاره نوتروني است با اين تفاوت كه داراي اسپين و چرخش است . اينها در حوضه پرتوي ايكس اشعه ساطع ميكنند كه به صورت مخروطي سو سو زنان مشاهده ميشوند اين چرخشها باعث ميشود كه ميدان مغناطيسي آن نيز به موازات آن داراي اسپين باشد . موضوع جالب ديگر در زمينه اين ستارههاي نوتروني حركت سريع آنها در فضا است . "
7 - معماي تابش اجرام نوتروني
"/ اخترشناسان به رفتار عجيب و بيگانه اجرام نوتروني عادت كردهاند ، اما آنان در رويايشان نيز كشف اخير در مورد اينگونه از ستارگان را پيش بيني نميكردند . در مقالهاي در مجله طبيعت (Nature) ، يك گروه بينالمللي از محققان اعلام كردهاند كه اين باقيماندههاي ستارهاي ، گاهي امواج راديويي بسيار قوي تابش ميكنند . اين تابشها تنها كسري از ثانيه طول ميكشند . اين نوع تابش از قويترين منابع امواج راديويي در آسمان محسوب ميشود ، حتي قويتر از خورشيد .
ستارگان نوتروني ، نوعي از ستارگان هستند كه از باقيمانده انفجار ستارگان بسيار پر جرم ( انفجارهاي ابر نو اختري ) به وجود ميآيند ، ساختار فيزيكي اين نوع ستارهها با مواد عادي متفاوت است . به دليل فشار بسيار زياد درون ستاره ، تقريبا تمام ذرات آن به نوترون تبديل ميشوند . به همين دليل به آن “ ستاره نوتروني ” ميگويند . ستارگان نوتروني به دليل داشتن ميدان مغناطيسي بسيار شديد و همچنين دوران نسبتا سريع به دور خود ، امواج الكترومغناطيسي در طول موج راديويي از خود تابش ميكنند . اما در موارد تازه كشف شده ، اين تابشها آنقدر شديد و در چنان زمان كوتاهي صورت ميگيرند كه به آنها لفظ “ تابش انفجاري ” را نسبت دادهاند .
كشف اخير ، دانشمندان را بر آن داشته است تا دليل وجود اين تابشهاي شديد راديويي و از آن مهمتر ، مكان ستارههاي نشر كننده آنها را در سير تكاملي ستاره نوتروني مشخص كنند . رابرت دانكن از دانشگاه تگزاس در آستن ، يكي از نظريه پردازان اصلي ستارگان نوتروني ميگويد : “ در حال حاضر جوابها كاملا نامعلوم است . ”
اين ستارگان نوتروني كه امواج راديويي را به صورت انفجاري تابش ميكنند ، توسط گروهي بينالمللي به سرپرستي مورا مك لاگلن از دانشگاه منچستر كشف شدهاند . اين گروه به بررسي اطلاعات بدست آمده از سال ۱۹۹۸ تا ۲۰۰۲ ، توسط تلسكوپ راديويي ۶۴ متري پاركز در استراليا پرداخته و به دنبال تپ اخترها و ستارگان نوتروني بودهاند كه در هنگام دوران به صورت تناوبي امواج راديويي كاملا عادي از خود منتشر ميسازند . علاوه بر تپ اخترهاي كشف شده ، كامپيوتر اين گروه ، ۱۱ منبع تابش انفجاري راديويي را كه در نزديكي صفحه كهكشان قرار داشتهاند كشف كرده است . اين گروه سه سال بعد را ، به اندازه گيري مختصات سماوي ، اندازه گيري خواص اين ستارگان و تاييد اين كشف پرداختهاند . اين اجرام به طور ميانگين در طول يك روز ، تنها 0.1 تا ۱ ثانيه قابل مشاهده هستند ( البته در طول موج راديويي ) و به همين دليل در گذشته مشاهده نشده بودند . اين تابشهاي انفجاري بين ۲ تا ۳۰۰ ميلي ثانيه ( هزارم ثانيه ) طول ميكشند ، و فاصله بين اين تابشها ۴ دقيقه تا ۳ ساعت است . مايكل كرامر ، يكي از اعضاي تيم تحقيقاتي ميگويد :“ شما بايد خيلي خوش شانس باشيد تا بتوانيد يكي از اين تابشها را ببينيد . ” اين گروه براي ۱۰ مورد از ۱۱ منبع ، دوره تناوبي بين 0.4 تا ۷ ثانيه يافتهاند ، به همين خاطر به نظر ميرسد ( اما ثابت نشده است ) كه اين انفجارهاي راديويي به خاطر دوران ستارگان نوتروني باشد . مك لاگلن كه تيم او اين اجرام را ( Rotating Radio Transient RRAT ) نام گذاري كردهاند ، ميگويد :“ تا آنجا كه ما مي دانيم هيچ جسم ديگري وجود ندارد كه بتواند با اين سرعت دوران كرده و در عين حال چنين انرژي تابشي را توليد كند . ” در هنگام وقوع اين تابشهاي انفجاري ، RRAT ها ، بعد از تپنده سحابي خرچنگ و تپنده ديگري به نام B۱۹۳۷+۲۱ ، روشنترين منابع راديويي هستند كه تا به حال ديده شدهاند .
با توجه به كوتاه بودن آن ، اين منابع احتمالا امواج راديويي را در پرتوهاي باريك و از مناطق كوچكي از سطح و يا مغناطيس كره ( مگنتوسفر ) يك ستاره نوتروني تابش ميكنند . ولي دليل دقيق اين انفجارها هنوز نامعلوم است . با توجه به طبيعت كوتاه مدت آنها ، مطالعه RRAT ها بسيار دشوار است . اين به آن معناست كه اخترشناسان بايد در حدس و گمان پيش بروند تا در آينده به اطلاعات بيشتري دست پيدا كنند . يكي از RRAT ها خصوصيات دوراني دارد كه بسيار شبيه به ستارگان نوتروني بسيار مغناطيسه ( مگنتارها ) است . مشاهدات نشان ميدهند كه حداقل تعدادي از RRAT هاي بسيار مغناطيسي وجود دارند كه سن آنها به دهها هزار سال ميرسد . ولي در يك RRAT ديگر خصوصيات دوراني متفاوتي مشاهده شده است كه به نظر ميرسد مانند تپندههاي عادي ميان سال باشد . مك لاگلن ميگويد:“ به نظر ميرسد كه RRAT ها خصوصيات بسيار گوناگوني دارند . اين بسيار جالب است چون نشان ميدهد كه هر ستاره نوتروني ميتواند رفتار بسيار عجيب و متفاوتي از خود بروز داده و همچنين موارد بسيار بيشتري از اين اجرام بايد وجود داشته باشند .”
با دانستن محدوده پوشش آسمان و حساسيت اطلاعات تلسكوپ پاركز و همچنين طبيعت زودگذر اين منابع راديويي ، مك لاگلن و همكارانش وجود 400.000 RRAT را در كهكشان راه شيري تخمين ميزنند كه اين تعداد ۴ برابر تعداد كل تپندههاي راديويي شناخته شده است . وجود تعداد زياد RRAT ها مي تواند اين معماي قديمي را حل كند كه چرا تعداد نسبتا كمي از ابر نو اخترها ، باقيماندهاي به شكل ستاره نوتروني به جاي ميگذارند . ستارگان نوتروني در انفجارها به وجود ميآيند ولي مانند سحابي خرچنگ ، به عنوان مثال ، بيش از نيمي از باقيماندههاي ابر نو اختري ، تپنده رصد شده ندارند .
ديويد هلفند ، رصدگر ستاره نوتروني از دانشگاه كلمبيا ميگويد :“ به نظر من ما ميتوانيم تصور كنيم كه اكثر ستارگان نوتروني در شرايط كاملا متفاوتي از تپنده خرچنگ متولد شدهاند و اين اجرام هستند كه نسل قبلي RRAT ها را تشكيل ميدادند . ” در چند دهه آينده اختر شناسان با ساخته شدن راديو تلسكوپهاي بسيار بزرگ ، اطلاعات بيشتري در مورد RRAT ها بدست خواهند آورد . مك لاگلن ميگويد:“ ما انتظار داريم تا SKA ( تلسكوپ يك كيلومتر مربعي ) ، 40.000 مورد ديگر از اين اجرام را كشف كند . اين راديو تلسكوپ هاي بسيار بزرگ بايد فهم ما را از زمينه راديويي آسمان به كلي تغيير دهند . ” علاوه بر كشف تعداد زيادي RRAT ، اين تلسكوپها ، به احتمال زياد رده جديدي از اجرام تابش كننده امواج راديويي كشف خواهند كرد . جوزف لازيو ( از آزمايشگاه تحقيقات نيروي دريايي آمريكا ) كه يك منبع تابش راديويي را در نزديكي مركز كهكشان در اوايل سال ۲۰۰۵ كشف كرده است ، ميگويد :“ مي توان به جرات اذعان كرد كه آسمان راديويي ما هنوز ناشناخته است .”
توجيه پديده تابش امواج راديويي توسط اجرام نوتروني چگونه است ؟
همانطور كه دانستيم اجرام نوتروني از اين نوع به شدت بار الكتريكي دارند ، آنهم از نوع بار مثبت و چون اين بار الكتريكي مثبت قويتر از نيروي گرانشي جرم نوتروني به نظر ميرسد ، با دوران ( اسپين ) جرم نوتروني ، ميدان مغناطيسي قوي عمود بر ميدان الكتريكي پديدار خواهد شد كه در مجموع يك ميدان الكترومغناطيسي يكنواخت را تشكيل خواهند داد ، حال اگر جرم نسبتا زيادي از خارج به طرف جرم نوتروني پرتاب شود ، تبديل سريع ذرات به نوترون ، انرژيزا بوده و اين انرژي ميتواند به پيكره جرم نوتروني شوك وارد كند و اين شوك باعث لرزش يا تغيير در سرعت دوران جرم نوتروني و در نتيجه نوسان ميدان الكترومغناطيسي شده و بدنبال آن امواج الكترومغناطيسي در خارج از افق رويداد و داخل ميدان الكترومغناطيسي جرم نوتروني توليد و انتشار خواهد يافت و چون قطر و دامنه نوسان جرم نوتروني زياد است ، پس اين امواج با طول موج بلند راديويي توليد و انتشار مييابند ، يعني فركانسي نزديك به سرعت زاويهاي آنها . به طور مثال اگر شوك خارجي باعث افزايش سرعت تا 1100 دور در ثانيه شود ، فركانس موج راديويي 1100 هرتز خواهد بود . در واقع امواج الكترومغناطيسي توليد شده توسط خود جرم نوتروني به واسطه قدرت و شدت غير قابل تصور ، توان فرار از ميدان گرانشي جرم نوتروني را دارا ميباشند ، زيرا اين امواج در فاصله نسبتا دوري از مركز گرانش نيز توليد ميشوند ( يعني خارج از شعاع شوارتس شيلد ) و البته برد امواج الكترومغناطيسي كمتر از برد ميادين گرانشي نيست . از طرف ديگر اين اجرام نوتروني خاموش نيستند بلكه چنين تصور ميشود كه همانند سياره زمين در مركز خود واكنشهاي هستهاي بخصوصي انجام ميدهند كه اين واكنشهاي هستهاي ( انفجارات ) ميتواند باعث تغيير در سرعت دوران ( سرعت زاويهاي ) يا لرزش در آنها شود ، در واقع سرعت زاويهاي ستارگان نوتروني ثابت نيست و در هر لحظه تغيير ميكند و همواره لرزههايي در آنها وجود دارد .
يادآوري : منظور ما از جرم نوتروني در اين مبحث ، يك سياه چاله و يا يك ستاره نوتروني ميباشد .
1 - تاثيرات دوران ( سرعت زاويهاي ) بر شكل هندسي ( حجمي ) يك جرم نوتروني :
شكل هندسي واقعي يك جرم نوتروني ، بسته به سرعت دوران ( سرعت زاويهاي ) از يك كره تا يك تورس ( Torus ) متغير است ، يعني اشكال زير !
http://ki2100.com/images/physics/end-of-the-univers/notron2.jpg
علت اختيار شكل تورس براي بعضي از اجرام نوتروني اين است كه سرعت دوران بعضي از آنها آنقدر زياد است كه نيروي گريز از مركز باعث پخ و تو خالي شدن آنها ميشود ، سرعت دوران بعضي از آنها چند هزار دور در ثانيه تخمين زده ميشود و سرعت حركت بعضي از ستارگان نوتروني 4000 كيلومتر در ثانيه اندازه گيري شده است . اجرام نوتروني ميتوانند در مشخصات فيزيكي بسيار متنوع و گوناگون باشند .
" / يك ستاره نوتروني در هر ثانيه بيش از 1120 بار دور خود ميچرخد .
به گزارش سايت اينترنتي "space.com"، اين ستاره نوتروني در حقيقت بقاياي سوخته ستاره عظيمي است كه هم اكنون به چگالي بسيار زيادي دست يافته كه اين ميزان چگالي پيش از اين تنها در سياه چالهها مشاهده شده است .
به گفته ستاره شناسان ، چگالي اين ستاره نوتروني به اندازهاي زياد است كه براي درك آن بايد بتوانيم تمامي جرم ستاره خورشيد را در منطقهاي به ابعاد يك شهر جاي بدهيم . ماده در اين ستاره به اندازهاي فشرده شده است كه تنها جرمي برابر با يك بند انگشت از اين ستاره ، در كره زمين صدها ميليون تن وزن خواهد داشت .
ستاره شناسان عقيده دارند دليل چرخش دوراني سريع اين ستاره ، تمركز شديد تمامي انرژي حركتي آن است . در اين ستاره نوتروني كه خود بازمانده يك ستاره عظيم است ، هر از چند گاهي انفجارهاي حرارتي - هستهاي بزرگي رخ ميدهد و پرتوهاي اشعه ايكس از آن منتشر ميشوند . هم اكنون ستاره شناسان آژانس فضايي اروپا با استفاده از ماهوارهي "اينتگرال" اين سازمان با مشاهده همين انفجارها موفق به اندازه گيري سرعت چرخش اين ستاره ، به نام XTE J1739-285 شدهاند .
ستاره مذكور هم اكنون با سرعت 1120 چرخش در هر ثانيه ، دور محور خود ميگردد . بيشترين ركورد ثبت شده براي چرخش وضعي ستارهها پيش از اين به ستاره نوتروني ديگري تعلق داشت كه در هر ثانيه 760 بار دور خود ميچرخيد .
به گفته "اريك كولكرز" دانشمند آژانس فضايي اروپا ، سرعت چرخش اين ستاره بيشتر از ميزاني است كه ما در گذشته تصور ميكرديم كه ممكن است براي يك ستاره اتفاق بيافتد و به همين علت بايد مشاهدات بيشتري براي تاييد سرعت چرخش ستاره مذكور انجام شود .
دانشمندان عقيده دارند ، سرعت چرخش ستارهها داراي يك حد بالاي نهايي است كه چنانچه سرعت چرخش يك ستاره از آن بالاتر رود ، ستاره از هم ميپاشد .
با اين وجود از آنجا كه ساختار ستارههاي نوتروني هنوز دقيقا مشخص نيست ، دانشمندان نيز نميتوانند حد بالاي سرعت چرخش دوراني اين ستارهها را تعيين كنند . به غير از ستارههاي نوتروني ، برخي سياه چالهها نيز از جمله اجرام آسماني عظيم با سرعت چرخش وضعي بالا هستند . سال ميلادي گذشته ستاره شناسان موفق به كشف سياه چالهاي شدند كه با سرعت 950 دور در ثانيه حول خود ميچرخد . براي مقايسه ، ستاره خورشيد در منظومه شمسي با سرعتي بسيار كمتر و در هر 36 روز تنها يك بار حول محور خود ميچرخد . "
با توجه به اين چنين سرعتهاي دوراني بالايي براي يك جرم نوتروني ، ميتوان با در نظر گرفتن نيروي گريز از مركز وارده بر پيكره آن و مقاومت بسيار زياد شبكه نوتروني ، براي سرعتهاي بيشتر از 1000 دور در ثانيه شكل زير را تصور نمود .
http://ki2100.com/images/physics/black-hole/1.jpg
2- بار الكتريكي يك جرم نوتروني
مقادير زيادي از الكترونها قبل از انفجار يك ستاره در سطح آن تجمع كرده و با انفجار ستاره همراه با پوسته آن به بيرون پرتاب ميشوند . در اين وضعيت توازن مابين تعداد الكترونها و پروتونها در ستاره به هم خورده و تعداد پروتونها بيشتر از تعداد الكترونها ميشود كه به دنبال آن نوترون كمتري توليد ميشود و مقدار بسيار زيادي از پروتونها همراه نوترونها تشكيل يك جرم متحد را ميدهند و همانطور كه ميدانيم در هسته عناصر به اندازه عدد اتمي عنصر ، پروتون وجود دارد و الكترون مازادي در ستارگان وجود ندارد كه آنها را تبديل به نوترون كند ، بديهي است كه اين پروتونها به علت داشتن دافعه الكتريكي نسبت به يكديگر ، در سطح بيروني جرم نوتروني تجمع خواهند كرد كه بار الكتريكي مثبت جرم نوتروني را فوقالعاده زياد خواهند نمود . به هر حال ميتوان سه لايه كلي براي جرم نوتروني در نظر گرفت 1- هسته مركزي ، متشكل از نوترونهاي خالص 2- لايه مياني ، مخلوطي از نوترونها و پروتونها 3- لايه خارجي ، پروتون خالص ، به شكل زير توجه نماييد !
http://ki2100.com/images/physics/black-hole/4.jpg
پوسته قرمز رنگ بيانگر تجمع پروتونهاي خالص در سطح خارجي يك جرم نوتروني دوار است كه جهت درك موضوع به مقدار 30 درجه برش خورده است .
3 - ميدان الكتريكي ، گرانشي و مغناطيسي يك جرم نوتروني دوار ( در حال چرخش )
http://ki2100.com/images/physics/black-hole/5.jpg
در شكل فوق جرم نوتروني از بالا و در حال چرخش موافق عقربههاي ساعت نشان داده ميشود ، مارپيچ يا دواير سبز رنگ بيانگر انحنا يا دوران ميدان گرانشي موافق عقربههاي ساعت است ، براي اينكه به صورت قراردادي امتداد بردارها يا نيروهاي گرانشي را از خارج به طرف مركز ميدان در نظر ميگيريم و مارپيچ يا دواير قرمز رنگ ، بيانگر دوران ميدان الكتريكي موافق عقربههاي ساعت است كه با توجه به جهت ميدان الكتريكي مثبت ، جهت اصلي ميدان الكتريكي مخالف جهت چرخش عقربههاي ساعت خواهد شد . در شكل فوق جهت ميدان گرانشي و ميدان الكتريكي مخالف يكديگر شكل ميگيرند .
http://ki2100.com/images/physics/black-hole/6.jpg
شكل فوق جرم نوتروني قبلي را از پهلو نشان ميدهد ، خطوط آبي رنگ ، بيانگر ميدان مغناطيسي حاصل از دوران ميدان الكتريكي است و اين ميدان مغناطيسي به واسطه وجود ميدان الكتريكي و گرانشي فوقالعاده قوي و شديد جرم نوتروني ، از كنارهها بريده و يا اينكه به شدت خم شده است و بعد از خوابيدن بر ميدان الكتريكي و گرانشي به صورت موازي در آمده است .
http://ki2100.com/images/physics/black-hole/7.jpg
شكل فوق نماي پرسپكتيو همان جرم دوار نوتروني را نشان ميدهد ، مارپيچهاي بنفش رنگ كه جهت تاب خوردن آنها هم جهت با دوران ميدان الكتريكي است ، مسير ورود ( سقوط ) ذرات باردار منفي به داخل جرم نوتروني و همچنين خروج ( پرتاب ) ذرات باردار مثبت را نشان ميدهد ، براي اينكه ما به صورت قراردادي امتداد نيروها و يا بردارهاي ميدان الكتريكي مثبت را از داخل به خارج ميدان در نظر ميگيريم . براي واضح بودن رسم ، فقط يك سطح از سه ميدان گرانشي ، الكتريكي و مغناطيسي رسم شده است و ميتوانيم شكل فوق را در تمامي ابعاد توسعه دهيم . در حقيقت چنين به نظر ميرسد كه يك جرم نوتروني باردار دوار براي ذرات باردار همانند يك شتاب دهنده فوقالعاده قوي نجومي عمل ميكند و يك ابر جت مكش و پرتاب ذرات باردار در فضاست ،
http://ki2100.com/images/physics/black-hole/15.jpg
ولي يك جرم نوتروني براي نوترونها صرفا جذب كننده به نظر ميرسد ، و علت آن اين است كه قدرت ميدان الكتريكي و مغناطيسي يك جرم نوتروني باردار به مراتب بيشتر از قدرت ميدان گرانشي آن است و در اين حالت بخصوص ، گرانش جرم نوتروني نميتواند آنچنان بر ذرات باردار تاثير گذار باشد ، بلكه در نهايت اين ميدان الكترومغناطيسي جرم نوتروني است كه ميتواند براي ذرات باردار تاثير گذار باشد . يك جرم نوتروني دوار ، همچون شتاب دهنده مغناطيسي ( مداري يا چرخشي ) به ذرات باردار انرژي و شتاب ميدهد ، پديدهاي است كه مشاهده شده و آن را پارادوكس ( تناقض ) بزرگ اجرام نوتروني ميشناسند و علت آن اين است كه ، زماني كه نور توان فرار از گرانش جرم نوتروني را ندارد چگونه ذرات باردار توان فرار از ميدان گرانش را خواهند داشت ؟ كه با توجه به توضيحات فوق ، مسئلهاي كاملا ساده و طبيعي به نظر رسيده و نميتواند تناقضي با ساختار فيزيكي يك جرم نوتروني باردار داشته باشد . گازهايي كه وارد ميدان گرانشي ميشوند بعد از به چرخش در آمدن به دور جرم نوتروني ، به مرور زمان واكنش هستهاي انجام داده و بعد از توليد و انتشار امواج الكترومغناطيسي كه بيشتر به صورت اشعه ايكس است به طرف مركز حركت و بعد از تبديل شدن به نوترون ، همراه پروتونها جذب جرم نوتروني شده كه در اين حالت مقداري از پروتونها با سرعتي نزديك به سرعت نور به خارج پرتاب ميشوند ، آنهم به صورت مارپيچي و دوراني .
4 - سرعت حركت اجرام نوتروني
ساختار فيزيكي كه يك جرم نوتروني دارد ميتواند به آن شتاب و سرعت فوقالعادهاي بدهد ، يعني چيزي نزديك به 4000 كيلومتر در ثانيه و حتي بيشتر از آن .
5- شناسايي اجرام نوتروني
"/ بخاطر خاصيت جذب نور ، تشخيص اجرام نوتروني بسيار مشكل است و مهمترين راهي كه به كيهان شناسان امكان شناسايي آنها را ميدهد ، مشاهده ديسك تجمعي است . نكته زيبا اينجاست كه گازها و مواد قسمتهاي داخلي ديسك ، سريعتر از گاز نواحي دور دست مي چرخند و در واقع سرعت قسمتهاي مختلف ديسك متفاوت است . لذا گازها تحت اصطكاك ، مالش و يونيزه شدن و برخورد شديد با يكديگر در ميادين گرانشي و الكتريكي ، بسيار داغ شده و از خود انواع مختلفي از تشعشعات حامل انرژي را ساطع ميكنند و يك منبع نيرومند پرتو x را تشكيل ميدهند كه توسط تلسكوپهاي امواج x قابل رويت ميباشد . علاوه بر امواج x معمولاً از طريق وجود لنزهاي گرانشي ، و ستارهاي در حال چرخش به دور يك شي غير قابل رويت نيز مي توان به وجود اجرام نوتروني در يك منطقه از فضا پيبرد . به طور كلي اجرام نوتروني در دو نوع چرخان و تقريبا غير چرخان وجود دارند و بعضي از آنها كه به سياه چالههاي كهكشاني موسومند در داخل يك مركز ( هسته ) كهكشان تشكيل ميشوند . شواهدي از وجود اين اجرام در قلب كهكشانها در دست است .
http://ki2100.com/images/physics/black-hole/8.jpg
لازم به توضيح است ، همانطور كه قبلا در مورد دوران ميادين گفته شد با دوران يك جرم نوتروني ، ميدان گرانشي آن نيز دوران كرده و به صورت منحني دايرهاي شكل در ميآيد كه ستاره مجاور ( همدم ) آن مجبور است بدون اينكه جذب مركز گرانش شود به دور جرم نوتروني به چرخش درآيد و باريكهاي از گاز ستاره به صورت مارپيچ به طرف جرم نوتروني سقوط كند كه مطالعه ساختار اجرام نوتروني ميتواند پديده دوران ميادين را مشخص و معلوم كند .
http://ki2100.com/images/physics/black-hole/9.jpg
ديسك تجمعي در پيرامون يك جرم نوتروني دوار ، منطقهاي بسيار شگفت انگيز ميباشد ، براي اينكه اتمهاي يونيزه شده از يك طرف تحت تاثير نيروي جاذبه گرانشي قرار ميگيرند و از طرف ديگر نيروي دافعه الكتريكي بر آنها اعمال ميشود كه سر انجام نهايي فرآيند ، حرارتهاي خيلي بالا به علت اصطكاكي است كه ميتوان اسم اين پديده را اصطكاك گرانشي الكترومغناطيسي ناميد كه ميتواند از شدت ميدان الكتريكي ذرات باردار كاسته و آنها را جذب هسته سياهچاله نمايد .
6 - پالسار يا پولسار چيست ؟
"/ پالسار نوعي ستاره نوتروني است با اين تفاوت كه داراي اسپين و چرخش است . اينها در حوضه پرتوي ايكس اشعه ساطع ميكنند كه به صورت مخروطي سو سو زنان مشاهده ميشوند اين چرخشها باعث ميشود كه ميدان مغناطيسي آن نيز به موازات آن داراي اسپين باشد . موضوع جالب ديگر در زمينه اين ستارههاي نوتروني حركت سريع آنها در فضا است . "
7 - معماي تابش اجرام نوتروني
"/ اخترشناسان به رفتار عجيب و بيگانه اجرام نوتروني عادت كردهاند ، اما آنان در رويايشان نيز كشف اخير در مورد اينگونه از ستارگان را پيش بيني نميكردند . در مقالهاي در مجله طبيعت (Nature) ، يك گروه بينالمللي از محققان اعلام كردهاند كه اين باقيماندههاي ستارهاي ، گاهي امواج راديويي بسيار قوي تابش ميكنند . اين تابشها تنها كسري از ثانيه طول ميكشند . اين نوع تابش از قويترين منابع امواج راديويي در آسمان محسوب ميشود ، حتي قويتر از خورشيد .
ستارگان نوتروني ، نوعي از ستارگان هستند كه از باقيمانده انفجار ستارگان بسيار پر جرم ( انفجارهاي ابر نو اختري ) به وجود ميآيند ، ساختار فيزيكي اين نوع ستارهها با مواد عادي متفاوت است . به دليل فشار بسيار زياد درون ستاره ، تقريبا تمام ذرات آن به نوترون تبديل ميشوند . به همين دليل به آن “ ستاره نوتروني ” ميگويند . ستارگان نوتروني به دليل داشتن ميدان مغناطيسي بسيار شديد و همچنين دوران نسبتا سريع به دور خود ، امواج الكترومغناطيسي در طول موج راديويي از خود تابش ميكنند . اما در موارد تازه كشف شده ، اين تابشها آنقدر شديد و در چنان زمان كوتاهي صورت ميگيرند كه به آنها لفظ “ تابش انفجاري ” را نسبت دادهاند .
كشف اخير ، دانشمندان را بر آن داشته است تا دليل وجود اين تابشهاي شديد راديويي و از آن مهمتر ، مكان ستارههاي نشر كننده آنها را در سير تكاملي ستاره نوتروني مشخص كنند . رابرت دانكن از دانشگاه تگزاس در آستن ، يكي از نظريه پردازان اصلي ستارگان نوتروني ميگويد : “ در حال حاضر جوابها كاملا نامعلوم است . ”
اين ستارگان نوتروني كه امواج راديويي را به صورت انفجاري تابش ميكنند ، توسط گروهي بينالمللي به سرپرستي مورا مك لاگلن از دانشگاه منچستر كشف شدهاند . اين گروه به بررسي اطلاعات بدست آمده از سال ۱۹۹۸ تا ۲۰۰۲ ، توسط تلسكوپ راديويي ۶۴ متري پاركز در استراليا پرداخته و به دنبال تپ اخترها و ستارگان نوتروني بودهاند كه در هنگام دوران به صورت تناوبي امواج راديويي كاملا عادي از خود منتشر ميسازند . علاوه بر تپ اخترهاي كشف شده ، كامپيوتر اين گروه ، ۱۱ منبع تابش انفجاري راديويي را كه در نزديكي صفحه كهكشان قرار داشتهاند كشف كرده است . اين گروه سه سال بعد را ، به اندازه گيري مختصات سماوي ، اندازه گيري خواص اين ستارگان و تاييد اين كشف پرداختهاند . اين اجرام به طور ميانگين در طول يك روز ، تنها 0.1 تا ۱ ثانيه قابل مشاهده هستند ( البته در طول موج راديويي ) و به همين دليل در گذشته مشاهده نشده بودند . اين تابشهاي انفجاري بين ۲ تا ۳۰۰ ميلي ثانيه ( هزارم ثانيه ) طول ميكشند ، و فاصله بين اين تابشها ۴ دقيقه تا ۳ ساعت است . مايكل كرامر ، يكي از اعضاي تيم تحقيقاتي ميگويد :“ شما بايد خيلي خوش شانس باشيد تا بتوانيد يكي از اين تابشها را ببينيد . ” اين گروه براي ۱۰ مورد از ۱۱ منبع ، دوره تناوبي بين 0.4 تا ۷ ثانيه يافتهاند ، به همين خاطر به نظر ميرسد ( اما ثابت نشده است ) كه اين انفجارهاي راديويي به خاطر دوران ستارگان نوتروني باشد . مك لاگلن كه تيم او اين اجرام را ( Rotating Radio Transient RRAT ) نام گذاري كردهاند ، ميگويد :“ تا آنجا كه ما مي دانيم هيچ جسم ديگري وجود ندارد كه بتواند با اين سرعت دوران كرده و در عين حال چنين انرژي تابشي را توليد كند . ” در هنگام وقوع اين تابشهاي انفجاري ، RRAT ها ، بعد از تپنده سحابي خرچنگ و تپنده ديگري به نام B۱۹۳۷+۲۱ ، روشنترين منابع راديويي هستند كه تا به حال ديده شدهاند .
با توجه به كوتاه بودن آن ، اين منابع احتمالا امواج راديويي را در پرتوهاي باريك و از مناطق كوچكي از سطح و يا مغناطيس كره ( مگنتوسفر ) يك ستاره نوتروني تابش ميكنند . ولي دليل دقيق اين انفجارها هنوز نامعلوم است . با توجه به طبيعت كوتاه مدت آنها ، مطالعه RRAT ها بسيار دشوار است . اين به آن معناست كه اخترشناسان بايد در حدس و گمان پيش بروند تا در آينده به اطلاعات بيشتري دست پيدا كنند . يكي از RRAT ها خصوصيات دوراني دارد كه بسيار شبيه به ستارگان نوتروني بسيار مغناطيسه ( مگنتارها ) است . مشاهدات نشان ميدهند كه حداقل تعدادي از RRAT هاي بسيار مغناطيسي وجود دارند كه سن آنها به دهها هزار سال ميرسد . ولي در يك RRAT ديگر خصوصيات دوراني متفاوتي مشاهده شده است كه به نظر ميرسد مانند تپندههاي عادي ميان سال باشد . مك لاگلن ميگويد:“ به نظر ميرسد كه RRAT ها خصوصيات بسيار گوناگوني دارند . اين بسيار جالب است چون نشان ميدهد كه هر ستاره نوتروني ميتواند رفتار بسيار عجيب و متفاوتي از خود بروز داده و همچنين موارد بسيار بيشتري از اين اجرام بايد وجود داشته باشند .”
با دانستن محدوده پوشش آسمان و حساسيت اطلاعات تلسكوپ پاركز و همچنين طبيعت زودگذر اين منابع راديويي ، مك لاگلن و همكارانش وجود 400.000 RRAT را در كهكشان راه شيري تخمين ميزنند كه اين تعداد ۴ برابر تعداد كل تپندههاي راديويي شناخته شده است . وجود تعداد زياد RRAT ها مي تواند اين معماي قديمي را حل كند كه چرا تعداد نسبتا كمي از ابر نو اخترها ، باقيماندهاي به شكل ستاره نوتروني به جاي ميگذارند . ستارگان نوتروني در انفجارها به وجود ميآيند ولي مانند سحابي خرچنگ ، به عنوان مثال ، بيش از نيمي از باقيماندههاي ابر نو اختري ، تپنده رصد شده ندارند .
ديويد هلفند ، رصدگر ستاره نوتروني از دانشگاه كلمبيا ميگويد :“ به نظر من ما ميتوانيم تصور كنيم كه اكثر ستارگان نوتروني در شرايط كاملا متفاوتي از تپنده خرچنگ متولد شدهاند و اين اجرام هستند كه نسل قبلي RRAT ها را تشكيل ميدادند . ” در چند دهه آينده اختر شناسان با ساخته شدن راديو تلسكوپهاي بسيار بزرگ ، اطلاعات بيشتري در مورد RRAT ها بدست خواهند آورد . مك لاگلن ميگويد:“ ما انتظار داريم تا SKA ( تلسكوپ يك كيلومتر مربعي ) ، 40.000 مورد ديگر از اين اجرام را كشف كند . اين راديو تلسكوپ هاي بسيار بزرگ بايد فهم ما را از زمينه راديويي آسمان به كلي تغيير دهند . ” علاوه بر كشف تعداد زيادي RRAT ، اين تلسكوپها ، به احتمال زياد رده جديدي از اجرام تابش كننده امواج راديويي كشف خواهند كرد . جوزف لازيو ( از آزمايشگاه تحقيقات نيروي دريايي آمريكا ) كه يك منبع تابش راديويي را در نزديكي مركز كهكشان در اوايل سال ۲۰۰۵ كشف كرده است ، ميگويد :“ مي توان به جرات اذعان كرد كه آسمان راديويي ما هنوز ناشناخته است .”
توجيه پديده تابش امواج راديويي توسط اجرام نوتروني چگونه است ؟
همانطور كه دانستيم اجرام نوتروني از اين نوع به شدت بار الكتريكي دارند ، آنهم از نوع بار مثبت و چون اين بار الكتريكي مثبت قويتر از نيروي گرانشي جرم نوتروني به نظر ميرسد ، با دوران ( اسپين ) جرم نوتروني ، ميدان مغناطيسي قوي عمود بر ميدان الكتريكي پديدار خواهد شد كه در مجموع يك ميدان الكترومغناطيسي يكنواخت را تشكيل خواهند داد ، حال اگر جرم نسبتا زيادي از خارج به طرف جرم نوتروني پرتاب شود ، تبديل سريع ذرات به نوترون ، انرژيزا بوده و اين انرژي ميتواند به پيكره جرم نوتروني شوك وارد كند و اين شوك باعث لرزش يا تغيير در سرعت دوران جرم نوتروني و در نتيجه نوسان ميدان الكترومغناطيسي شده و بدنبال آن امواج الكترومغناطيسي در خارج از افق رويداد و داخل ميدان الكترومغناطيسي جرم نوتروني توليد و انتشار خواهد يافت و چون قطر و دامنه نوسان جرم نوتروني زياد است ، پس اين امواج با طول موج بلند راديويي توليد و انتشار مييابند ، يعني فركانسي نزديك به سرعت زاويهاي آنها . به طور مثال اگر شوك خارجي باعث افزايش سرعت تا 1100 دور در ثانيه شود ، فركانس موج راديويي 1100 هرتز خواهد بود . در واقع امواج الكترومغناطيسي توليد شده توسط خود جرم نوتروني به واسطه قدرت و شدت غير قابل تصور ، توان فرار از ميدان گرانشي جرم نوتروني را دارا ميباشند ، زيرا اين امواج در فاصله نسبتا دوري از مركز گرانش نيز توليد ميشوند ( يعني خارج از شعاع شوارتس شيلد ) و البته برد امواج الكترومغناطيسي كمتر از برد ميادين گرانشي نيست . از طرف ديگر اين اجرام نوتروني خاموش نيستند بلكه چنين تصور ميشود كه همانند سياره زمين در مركز خود واكنشهاي هستهاي بخصوصي انجام ميدهند كه اين واكنشهاي هستهاي ( انفجارات ) ميتواند باعث تغيير در سرعت دوران ( سرعت زاويهاي ) يا لرزش در آنها شود ، در واقع سرعت زاويهاي ستارگان نوتروني ثابت نيست و در هر لحظه تغيير ميكند و همواره لرزههايي در آنها وجود دارد .