Aysajoon
28th November 2011, 08:11 PM
سيالات موادي هستند كه شكل ظرفي را كه درون آنها قرار دارند ، به خود ميگيرند و لذا براي انتقال آنها ، به محيطي واسطه نياز داريم .
بشر از ديرگاه براي انتقال سيال بصورت پيوسته از لوله استفاده مينمود . لوله ها در طولها ، اشكال و اندازههاي مختلف بكار ميروند . آيا تا به حال به شكل لوله ها توجه كردهايد ؟ زياد شدن طول لوله يا قطر لوله ها چه اثري بر روي انتقال سيال و ميزان مصرف انرژي خواهد گذاشت ؟ چرا لوله ها را به صورت مستقيم استفاده ميكنند ؟ اگر لوله ها را خم كنند يا حتي بپيچانندچه تغييري در جريان مشاهده ميكنيم ؟
گاهي از اوقات لوله حاوي سيال را گرم و يا سرد ميكنند و با اين عمل ، از لوله يك مبادله گر حرارتي ميسازند . با توجه به اين موضوع به سوالات بالا چنين پاسخ ميدهيم :
لوله در اينجا مجرايي است كه سيال در داخل آن جريان مييابد و همزمان گرم يا سرد نيز ميشود . هنگامي كه سيال لزجي وارد مجرايي ميشود ، لايه مرزي ، در طول ديواره تشكيل خواهد شد . لايه مرزي بتدريج در كل سطح مقطع مجرا توسعه مييابد و از آن به بعد به جريان ، كاملا توسعه يافته (فراگير ) گفته ميشود . معمولا اگر طول لوله بلندتر از 10 برابر قطر لوله باشد آنگاه جريان توسعه يافته شده است .
اگر ديواره مجرا گرم يا سرد شود ، لايه مرزي گرمايي نيز در طول ديواره مجرا توسعه خواهد يافت .
اگر گرمايش يا سرمايش، از ورودي مجرا شروع شود ، هم نمودار توزيع سرعت و هم نمودار توزيع دما بصورت همزمان توسعه مييابند. مسأله انتقال گرما در اين شرايط ، به مسأله طول ورودي هيدرو ديناميكي و گرمايي تبديل ميشود كه در بر گيرنده چهاذ حالت مختلف است و به اينكه هر كدام از دو لايه مرزي سرعت و دما در چه وضعيتي بسر ميبرند(( كاملا توسعه يافته و يا در حال توسعه)) بستگي دارد.
در ناحيه كاملا توسعه يافته در داخل لوله ، عملا لايه مرزي وجود ندارد چون دو ناحيه مختلف، كه يكي با سرعت جريان آزاد و ديگري تحت تاثير ديواره باشد ، وجود نخواهد داشت و در سرتاسر لوله ، تمام نواحي تحت تاثير ديواره قرار دارند. از آنجا لايه مرزي، مقاومتي در برابر انتقال حرارت است، لذا بيشترين ميزان ضريب انتقال حرارت جابجايي در ابتداي لوله، يعني در جايي كه ضخامت لايه مرزي صفر است، مشاهده ميشود. مقدار اين ضريب به تدريج همزمان با افزايش ضخامت لايه مرزي و در نتيجه افزايش مقاومت در برابر انتقال حرارت، كاهش مييابد تا به مقدار آن در ناحيه كاملا توسعه يافته برسد كه تقريبا مقداري ثابت است.
حال اثر تغيير شكلي خاص در لوله را روي ويژگيهاي سرعت و انتقال حرارت بررسي ميكنيم :
كويلهاي حلزوني و مارپيچ ، لولههاي خميده اي هستند كه بعنوان مبادله گرهاي گرماي لوله خميده در كاربردهاي مختلف ايتفاده ميشوند.
بياييد كويلهاي مارپيچ يا حلزوني را تحليل كنيم. سيالي را در درون اين لوله ها در نظر ميگيريم. آنچه در ابتدا نظرمان را به خود جلب ميكند اينست كه چون لوله ها بصورت مارپيچ (دايروي) پيچيده شدهاند، لذا در اثر حركت دوراني و محوري، نيرويي به آنها وارد ميشود و اين خود باعث ميشود تا شتاب سيال صفر نشود، حال سؤالي كه اينجا مطرح ميشود اينست كه با وجود اين نيرو، آيا جريان داخل مارپيچ، كاملا توسعه يافته است يا جرياني در حال توسعه است و پروفايل سرعت تغيير ميكند. آيا دليل بيشتر بودن h (ضريب انتقال حرارت جابجايي) در ناحيه، نيبت به لوله مستقيم نيز،اين است(ميدانيم كه h در ناحيه كاملا توسعه يافته كوچكتر از h در ناحيه در حال توسعه است)؟ يا هيچكدام از اينها صحيح نيست و دليل بزرگتر بودن ضريب انتقال حرارت جابجايي در اين ناحيه چيز ديگري است؟
در اولين نگاه بنظر مي رسد كه جريان داخل كويل كاملا توسعه يافته نيست و دليل بيشتر بودن h نيز همين است. با اين حساب اين جمله را چگونه توجيه كنيم كه : دادههاي محدود راجع به جريان آشفته در حال توسعه ، نشان ميدهد كه جريان ، در نيم دور اول كويل كاملا توسعه مييابد؟ اگر اينطور باشد پس دليل افزايش h چيست؟
ادامه مطلب در لينك زير...
http://daneshju-club.com/thread-2667.html
بشر از ديرگاه براي انتقال سيال بصورت پيوسته از لوله استفاده مينمود . لوله ها در طولها ، اشكال و اندازههاي مختلف بكار ميروند . آيا تا به حال به شكل لوله ها توجه كردهايد ؟ زياد شدن طول لوله يا قطر لوله ها چه اثري بر روي انتقال سيال و ميزان مصرف انرژي خواهد گذاشت ؟ چرا لوله ها را به صورت مستقيم استفاده ميكنند ؟ اگر لوله ها را خم كنند يا حتي بپيچانندچه تغييري در جريان مشاهده ميكنيم ؟
گاهي از اوقات لوله حاوي سيال را گرم و يا سرد ميكنند و با اين عمل ، از لوله يك مبادله گر حرارتي ميسازند . با توجه به اين موضوع به سوالات بالا چنين پاسخ ميدهيم :
لوله در اينجا مجرايي است كه سيال در داخل آن جريان مييابد و همزمان گرم يا سرد نيز ميشود . هنگامي كه سيال لزجي وارد مجرايي ميشود ، لايه مرزي ، در طول ديواره تشكيل خواهد شد . لايه مرزي بتدريج در كل سطح مقطع مجرا توسعه مييابد و از آن به بعد به جريان ، كاملا توسعه يافته (فراگير ) گفته ميشود . معمولا اگر طول لوله بلندتر از 10 برابر قطر لوله باشد آنگاه جريان توسعه يافته شده است .
اگر ديواره مجرا گرم يا سرد شود ، لايه مرزي گرمايي نيز در طول ديواره مجرا توسعه خواهد يافت .
اگر گرمايش يا سرمايش، از ورودي مجرا شروع شود ، هم نمودار توزيع سرعت و هم نمودار توزيع دما بصورت همزمان توسعه مييابند. مسأله انتقال گرما در اين شرايط ، به مسأله طول ورودي هيدرو ديناميكي و گرمايي تبديل ميشود كه در بر گيرنده چهاذ حالت مختلف است و به اينكه هر كدام از دو لايه مرزي سرعت و دما در چه وضعيتي بسر ميبرند(( كاملا توسعه يافته و يا در حال توسعه)) بستگي دارد.
در ناحيه كاملا توسعه يافته در داخل لوله ، عملا لايه مرزي وجود ندارد چون دو ناحيه مختلف، كه يكي با سرعت جريان آزاد و ديگري تحت تاثير ديواره باشد ، وجود نخواهد داشت و در سرتاسر لوله ، تمام نواحي تحت تاثير ديواره قرار دارند. از آنجا لايه مرزي، مقاومتي در برابر انتقال حرارت است، لذا بيشترين ميزان ضريب انتقال حرارت جابجايي در ابتداي لوله، يعني در جايي كه ضخامت لايه مرزي صفر است، مشاهده ميشود. مقدار اين ضريب به تدريج همزمان با افزايش ضخامت لايه مرزي و در نتيجه افزايش مقاومت در برابر انتقال حرارت، كاهش مييابد تا به مقدار آن در ناحيه كاملا توسعه يافته برسد كه تقريبا مقداري ثابت است.
حال اثر تغيير شكلي خاص در لوله را روي ويژگيهاي سرعت و انتقال حرارت بررسي ميكنيم :
كويلهاي حلزوني و مارپيچ ، لولههاي خميده اي هستند كه بعنوان مبادله گرهاي گرماي لوله خميده در كاربردهاي مختلف ايتفاده ميشوند.
بياييد كويلهاي مارپيچ يا حلزوني را تحليل كنيم. سيالي را در درون اين لوله ها در نظر ميگيريم. آنچه در ابتدا نظرمان را به خود جلب ميكند اينست كه چون لوله ها بصورت مارپيچ (دايروي) پيچيده شدهاند، لذا در اثر حركت دوراني و محوري، نيرويي به آنها وارد ميشود و اين خود باعث ميشود تا شتاب سيال صفر نشود، حال سؤالي كه اينجا مطرح ميشود اينست كه با وجود اين نيرو، آيا جريان داخل مارپيچ، كاملا توسعه يافته است يا جرياني در حال توسعه است و پروفايل سرعت تغيير ميكند. آيا دليل بيشتر بودن h (ضريب انتقال حرارت جابجايي) در ناحيه، نيبت به لوله مستقيم نيز،اين است(ميدانيم كه h در ناحيه كاملا توسعه يافته كوچكتر از h در ناحيه در حال توسعه است)؟ يا هيچكدام از اينها صحيح نيست و دليل بزرگتر بودن ضريب انتقال حرارت جابجايي در اين ناحيه چيز ديگري است؟
در اولين نگاه بنظر مي رسد كه جريان داخل كويل كاملا توسعه يافته نيست و دليل بيشتر بودن h نيز همين است. با اين حساب اين جمله را چگونه توجيه كنيم كه : دادههاي محدود راجع به جريان آشفته در حال توسعه ، نشان ميدهد كه جريان ، در نيم دور اول كويل كاملا توسعه مييابد؟ اگر اينطور باشد پس دليل افزايش h چيست؟
ادامه مطلب در لينك زير...
http://daneshju-club.com/thread-2667.html